2 SEM TDC MTH M 1

2015

(May)

MATHEMATICS

(Major)

Course: 201

(Matrices, Ordinary Differential Equations, Numerical Analysis)

Full Marks: 80
Pass Marks: 32/24

Time: 3 hours

The figures in the margin indicate full marks for the questions

A: Matrices

(Marks: 20)

1. (a) Under what condition, the rank of the following matrix A is 3?

$$A = \begin{bmatrix} 2 & 4 & 2 \\ 3 & 1 & 2 \\ 1 & 0 & x \end{bmatrix}$$

1

(b) Show that the rank of a skew-symmetric matrix cannot be one.

2

(c) Reduce the matrix A to its normal form and hence find its rank:

5

$$A = \left[\begin{array}{cccc} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{array} \right]$$

_

Find non-singular matrices P and Q such that PAQ is in the normal form, where

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 3 & 2 \\ 2 & 1 & 3 \end{bmatrix}$$

2. (a) Under what condition, a system of m homogeneous linear equations AX = 0 in n unknowns has only trivial solution?

1

(b) What is the eigenvalue of $P^{-1}AP$, if eigenvalue of matrix A is λ ?

1

(c) Investigate for what values of λ and μ , the simultaneous equations

$$x+y+z=6$$
$$x+2y+3z=10$$
$$x+2y+\lambda z=\mu$$

have (i) no solution, (ii) a unique solution and (iii) an infinite number of solutions.

(d) State and prove Cayley-Hamilton theorem.

Or

Find the characteristic roots and associated characteristic vectors for the matrix

$$A = \left[\begin{array}{rrr} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{array} \right]$$

B: Ordinary Differential Equation

(Marks: 30)

- 3. (a) Is the differential equation (2x-y+1)dx+(2y-x+1)dy=0 exact?
 - (b) Find the integrating factor of the differential equation

$$x\cos x \frac{dy}{dx} + y(x\sin x + \cos x) = 1$$

P15-1500/452

(Turn Over)

1

4

- (c) Solve (any one):
 - $(i) \qquad (x+2y^3)\frac{dy}{dx} = y .$
 - (ii) $x = y p^2$
- (d) If $y_1(n)$ and $y_2(n)$ are any two solutions of $a_0(n)y''(n) + a_1(n)y'(n) + a_2(n)y(n) = 0$, then prove that the linear combination $c_1y_1(n) + c_2y_2(n)$, where c_1 and c_2 are constants, is also a solution of the given equation.

Or

Show that linearly independent solutions of y''-2y'+2y=0 are $e^x \sin x$ and $e^x \cos x$. What is the general solution? Find the solution y(n) with the property y(0) = 2, y'(0) = -3.

- 4. (a) If auxiliary equation has two equal pairs of imaginary roots, then what is the general solution of the second-order linear differential equation?
 - (b) What is the value of

$$\frac{1}{f(D^2)}\sin ax$$

if $f(-a^2) \neq 0$?

1

1

3

4

P15-1500/452

(Continued)

4×2=8

(i)
$$(D^2 - 4D + 13) y = 0$$
, $D = \frac{dy}{dx}$

(ii)
$$(D^4 + 2D^2 + 1)y = x^2 \cos x$$

(iii)
$$(D-2)^2y = x^2e^{3x}$$

5×2=10

(i)
$$\frac{d^2y}{dx^2} - 4x\frac{dy}{dx} + (4x^2 - 1)y = -3e^{x^2}\sin 2x$$
(by removing first-order derivative)

(ii)
$$\frac{d^2y}{dx^2} + \frac{3}{x}\frac{dy}{dx} + \frac{a^2}{x^6}y = \frac{1}{x^8}$$
(by changing the independent variable)

(iii)
$$\frac{d^2y}{dx^2} + 4y = 4 \tan 2x$$
(by applying the method of variation of parameters)

C: Numerical Analysis

(Marks: 30)

5. (a) Fill in the blank:

1

If f(x) is continuous in the interval [a, b] and if f(a) and f(b) are of opposite signs, then the equation f(x) = 0 will have ——real root between a and b.

(b) What is the length of the subinterval which contains x_n after n bisections? 1 (c) Using regula falsi method, find the first approximate value of the root of the equation $f(x) = x \tan x + 1$ that between 2.5 and 3. 3 (d) Answer (any two): 5×2=10 Describe Newton-Raphson method (i) for obtaining the real roots of the equation f(x) = 0. (ii) Apply Gauss-Jordan method, to find the solution of the following system: 10x + y + z = 122x+10y+z=13x + y + 5z = 7Solve by Gauss-Seidel method fiii) 28x + 4u - z = 322x+17y+4z=35x+3y+10z=246. (a) State trapezoidal rule. 1 Show that $E = e^{hD}$, where the symbols have their usual meanings. 2 (c) Evaluate $\Delta \left(\frac{2^x}{x!}\right)$.

- (d) Answer (any two): 5×2=10
 - (i) Deduce the Simpson's one-third rule.
 - (ii) The population of a town is as follows:

Year(x) : 1941 1951 1961 1971 1981 1991

Population (in lakhs) (y) : 20 24 29 36 46 51

Estimate the population increase during the period 1946 to 1976.

(iii) Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by trapezoidal rule.
