2 SEM TDC MTH M 1

2020

MATHEMATICS

(Major)

Course: 201

(Matrices, Ordinary Differential Equations, Numerical Analysis)

Full Marks: 80 Pass Marks: 32/24

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Matrices)

(Marks : 20)

- **1.** (a) Write the rank of a matrix whose every element is unity.
 - (b) Choose the correct answer for the following:
 Let r be the rank of a matrix A. Then every square submatrix of order r+1 is a
 - (i) null matrix
 - (ii) singular matrix

(Turn Over)

1

1

- (iii) non-singular matrix
- (iv) row matrix
- (c) Find the rank of

$$\begin{bmatrix} 1 & 1 & 1 \\ k & k & k \\ k^2 & k^2 & k^2 \end{bmatrix}, k \in \mathbb{R}^+$$

(d) Find the rank of the matrix A by reducing it to canonical form, where

$$A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & -3 \end{bmatrix}$$

2

4

Or Or

Find the rank of the matrix

$$\begin{bmatrix} 1 & -1 & 2 & 3 \\ 3 & 2 & -4 & 1 \\ 5 & -3 & 2 & 6 \end{bmatrix}$$

by reducing it to echelon form.

- 2. (a) Write the condition when a system Ax = b of m linear equations in n unknowns is consistent.
 - (b) If k is an eigenvalue of a non-singular matrix A, then write an eigenvalue of A^{-1} .

1

1

(c) Show that the following system of equations

$$x+y+z = 9$$

$$2x+5y+7z = 52$$

$$2x+y-z = 0$$

is consistent and hence solve it.

5

Or

Show that the following equations

$$2x-y+z=4$$

$$3x-y+z=6$$

$$4x-y+2z=7$$

$$-x+y-z=9$$

are inconsistent.

(d) Show that the matrix

$$\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

satisfies its own characteristic equation.

5

Or

Determine the eigenvalues of the matrix

$$\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -2 & -2 & 0 \end{bmatrix}$$

GROUP-B

(Ordinary Differential Equations)

(Marks: 30)

3. (a) If

$$\frac{dy}{dx} + py = 0$$

then write the solution of the equation.

1

(b) If M and N are both homogeneous functions of x and y of degree n of the differential equation Mdx + Ndy = 0, then write an integrating factor of the equation.

1

(c) Solve any one of the following:

4

(i) $\frac{dy}{dx} + x\sin 2y = x^3 \cos^2 y$

(ii)
$$x\frac{dy}{dx} - 2y = xy^4$$

(d) Solve $(x^2 + y^2)dx - 2xydy = 0$

4

Or

Show that e^x , e^{-2x} , e^{2x} are linearly independent solutions of a differential equation. Also, find the differential equation.

20P/540

(Continued)

4. (a) Let the transformation $x = e^z$ be applied to the equation

$$a_0 x^2 \frac{d^2 y}{dx^2} + a_1 x \frac{dy}{dx} + a_2 y = F(x), \ a_0, \ a_1, \ a_2 \in R$$

Write the general form of the transformed differential equation. 2

(b) Solve any two from the following: 4×2=8

(i)
$$\frac{d^3y}{dx^3} + \frac{dy}{dx} = 2x^2 + 4\sin x$$

(ii)
$$\frac{d^2y}{dx^2} - y = 3x^2e^x$$

(iii)
$$x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = 4 \log x$$

- **5.** Solve any *two* of the following: $5 \times 2 = 10$
 - (i) $\frac{d^2y}{dx^2} + y = \tan x$, by using variation of parameters
 - (ii) $(1+x^2)^2 \frac{d^2y}{dx^2} + 2x(1+x^2)\frac{dy}{dx} + 4y = 0$, by changing independent variable
 - (iii) $\frac{d^2y}{dx^2} + \frac{2}{x}\frac{dy}{dx} n^2y = 0$, by removing the first order derivative

GROUP-C

(Numerical Analysis)

(Marks : 30)

6.	(a)	State True or False :	1
		A transcendental equation may have no	
		roots.	
		and with any and a little of the second	
	(b)	Write how many function evaluations	
		require per iteration in secant method.	1
	(c)	Explain the geometrical interpretation of	
		Newton-Raphson method.	4
	(d)	Find a real root of the equation	
		$x^3 - x - 4 = 0$ lying between 1 and 2 by	
		using bisection method (perform	
		3 iterations).	5
		Or	
		Describe Gauss-Seidel method.	
		_ , , , , , , , 1 ,	
	(e)	Find the reciprocal of $\frac{1}{7}$ by using	
		Newton-Raphson method.	

Or

Solve

$$x_1 + x_2 - x_3 = 2$$
$$2x_1 + 3x_2 + 5x_3 = -3$$
$$3x_1 + 2x_2 - 3x_3 = 6$$

by using Gauss elimination method.

- 7. (a) Show that $\delta(x_0, x_1) = \delta(x_1, x_0)$.
 - (b) Show that $\Delta \nabla = \Delta \nabla$.
 - (c) If $f(x) = e^{ax}$, find $\Delta^2 f(x)$.
 - (d) Deduce Newton's general interpolation formula.

Or

Evaluate $\int_0^{10} x^2 dx$ by using Simpson's $\frac{1}{3}$ rule.

(e) Deduce trapezoidal rule for numerical integration.

1

4