2 SEM TDC MTH M 1

2018

(May)

MATHEMATICS

(Major)

Course: 201

(Matrices, Ordinary Differential Equations, Numerical Analysis)

Full Marks: 80
Pass Marks: 32/24

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Matrices)

(Marks : 20)

- 1. (a) If A is an n-rowed non-singular matrix, then what is the rank of A^T ?
 - (b) Find the rank of the matrix

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 0 & 1 & 1 \end{pmatrix}$$

2

1

8P/**501**

(Turn Over)

(c) Reduce the matrix A to its normal form where

$$A = \begin{pmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{pmatrix}$$

Hence find the rank of A.

5

Or

Find the rank of the matrix

$$\begin{pmatrix}
1 & 1 & -3 & 2 \\
2 & -1 & 2 & -3 \\
3 & -2 & 1 & -4 \\
-4 & 1 & -3 & 1
\end{pmatrix}$$

by reducing it to echelon form.

- 2. Answer any two of the following: $6\times2=12$
 - (a) Define characteristic roots of a matrix.
 Find the characteristic equation of the matrix

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4 \end{pmatrix}$$

and verify Cayley-Hamilton theorem. Hence compute A^{-1} .

8P/501

(Continued)

(b) Find for what values of λ , the equations

$$x+y+z=1$$

$$x+2y+4z=\lambda$$

$$x+4y+10z=\lambda^{2}$$

have a solution and also solve them completely in each case.

(c) What do you mean by homogeneous and non-homogeneous linear equations? Show that the system of equations

$$5x+3y+7z=4$$
$$3x+26y+2z=9$$
$$7x+2y+10z=9$$

is consistent and solve it.

GROUP-B

(Ordinary Differential Equations)

(Marks : 30)

3. (a) Find Wronskian of $\cos bx$ and $\sin bx$ $(b \neq 0)$.

-

(b) Solve:

2

1

$$(x+y+1)\frac{dy}{dx}=1$$

(c) Find the complete solution and singular solution of the differential equation

$$y = px + f(p)$$
, where $p = \frac{dy}{dx}$

4

1

(d) Answer any one of the following:

(i) Solve:

$$xdx + ydy + \frac{xdy - ydx}{x^2 + y^2} = 0$$

(ii) Prove that Wronskian of the functions e^{m_1x} , e^{m_2x} , e^{m_3x} is equal to

$$(m_1-m_2)(m_2-m_3)(m_3-m_1)e^{(m_1+m_2+m_3)x}$$

4. (a) Under what condition $y = e^{ax}$ will be a solution of the equation

$$\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = 0?$$

(b) Show that the roots of the auxiliary equation are 1, 1, -2 of the differential equation

$$x^{3} \frac{d^{3}y}{dx^{3}} + 3x^{2} \frac{d^{2}y}{dx^{2}} - 2x \frac{dy}{dx} + 2y = x^{2}$$

(i)
$$\frac{d^2y}{dx^2} + y = \cos 2x$$

(ii)
$$(D^2 - 4D + 4)y = x^3e^{2x}$$

(i)
$$(x^2D^2 - 3xD + 5)y = \sin(\log x)$$
 where $\frac{d}{dx} \equiv D$

(ii)
$$\sin^2 x \cdot \frac{d^2 y}{dx^2} = 2y$$
, given $y = \cot x$ is a solution

5. Answer any two of the following: 5×

5×2=10

(a) Solve by removal of the first-order derivative:

$$\frac{d^2y}{dx^2} + 2x\frac{dy}{dx} + (x^2 + 1)y = x^3 + 3x$$

(b) Solve by changing the independent variable:

$$\frac{d^2y}{dx^2} + \cot x \frac{dy}{dx} + 4y \csc^2 x = 0$$

(c) Solve by the method of variation of parameters:

$$\frac{d^2y}{dx^2} + 9y = \sec 3x$$

GROUP-C

(Numerical Analysis)

(Marks: 30)

- 6. (a) What is the degree of convergence of the Newton-Raphson method?
 - (b) Give the geometrical interpretation of Newton-Raphson method.
 - (c) Solve $x^3 2x 5 = 0$ for the positive root by iteration method. 5

Or

Solve the equation $x \tan x + 1 = 0$ by regula falsi method starting with $a = 2 \cdot 5$ and b = 3 correct to 3 decimal places.

(d) Solve by Gauss elimination method: 5 2x+3y-z=5; 4x+4y-3z=3; 2x-3y+2z=2

Or

Apply Gauss-Jordan method to find the solution of the following system:

$$10x+y+z=12$$
; $2x+10y+z=13$; $x+y+5z=7$

1

- 7. (a) State 'true' or 'false':

 Simpson's one-third rule is better than the trapezoidal rule.
 - (b) Show that $\delta = E^{\frac{1}{2}} E^{-\frac{1}{2}}$, where the symbols have their usual meanings. 2
 - (c) Evaluate: 2 $\Delta^3 (1-x)(1-2x)(1-3x) \text{ if } h=1$
 - (d) Answer any two of the following: 5×2=10
 - (i) The population of a town is as follows:

Year x: 1941 1951 1961 1971 1981 1991

Population in Lakhs y: 20 24 29 36 46 51

Estimate the population increase during the period 1946 to 1976.

(ii) Evaluate

$$\int_0^1 \frac{dx}{1+x}$$

by dividing the range into 10 equal parts correct to four decimal places.

- (iii) Derive the Newton's forward interpolation formula.
- (iv) Deduce the general quadrature formula for equidistant ordinates.

* * *