2 SEM TDC STS M 1 (N/O)

2016

(May)

STATISTICS

(Major)

Course: 201

(Mathematics for Statistics—I)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 48
Pass Marks: 14

Time: 2 hours

1. Choose the correct answer:

1×6=6

- (a) If $A = \{1, 2, \{3, 4\}, 5\}$, then which of the following statements is incorrect?
 - (i) $\{3, 4\} \in A$
 - (ii) $\{(3, 4)\}\subset A$
 - (iii) $\{3, 4\} \subset A$
 - (iv) None of the above

P16/439

(Turn Over)

- (b) Which of the following is not equivalent to $A \subset B$?
 - (i) $A B = \phi$
 - (ii) $A \cap B = A$
 - (iii) $A \cup B = B$
 - (iv) None of these
- (c) If $S_{n+1} \ge S_n$, then the sequence $\{S_n\}$ is
 - (i) monotonic increasing
 - (ii) strictly increasing
 - (iii) monotonic decreasing
 - (iv) oscillatory
- (d) According to Cauchy's root test, $\lim_{n\to\infty} (u_n)^{\frac{1}{n}} = l > 1 \text{ means that the series}$ Σu_n is
 - (i) convergent
 - (ii) divergent
 - (iii) oscillatory.
 - (iv) convergent to 1 only

P16/439

(Continued)

- (e) The first derivative of the function x^8 w.r.t. another function x^3 is
 - (i) $\frac{3}{8}x^5$
 - (ii) $\frac{8}{3}x^5$
 - (iii) 24x⁵
 - (iv) None of the above
- (f) The value of $\int_0^{\pi/2} \sin^6 x \, dx$ is
 - (i) $5\pi/64$
 - (ii) 5π/32
 - (iii) 5/32
 - (iv) None of the above
- 2. (a) If S and T are subsets of real numbers, then show that $(S \cup T)' = S' \cup T'$.
 - (b) Show that a set is closed iff its complement is open. 3
- 3: Answer any two of the following: 6×2=12
 - (a) Define a bounded sequence. If $\{a_n\}$ is a bounded sequence such that $a_n > 0$ for all $n \in \mathbb{N}$, then show that

$$\underline{\lim} \left(\frac{1}{a_n} \right) = \frac{1}{\overline{\lim} \ a_n}, \text{ if } \overline{\lim} \ a_n > 0$$
1+5=6

P16/439

(Turn Over)

(b) State Cauchy's first theorem on limits. Using the theorem, show that

$$\lim_{n \to \infty} \left[\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right] = 1$$
1+5=6

(c) What is monotonic sequence? Show that the sequence $\{a_n\}$ defined by $a_{n+1} = \frac{1}{2} \left(a_n + \frac{9}{a_n} \right), \ n \ge 1 \text{ and } a_1 > 0$

converges to 3. 1+5=6

4. (a) Show that the function $f(x) = x^2 - 6x$ is increasing for x > 3.

(b) Show that $D^n(x^n) = n!$

- 5. Answer any two of the following:
 - (a) If $\sin y = x \sin (a + y)$, then prove that

$$\frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}$$

(b) If
$$z = \frac{x^2y^2}{x+y}$$
, then prove that

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 3z$$

(c) State and prove Leibnitz theorem. 5

6. Answer any two of the following:

(a) If
$$f(x) = f(a + x)$$
, then prove that

$$\int_0^{na} f(x) dx = n \int_0^a f(x) dx$$

$$\int_0^2 \int_0^{4+x^2} \frac{dx \, dy}{4+x^2+u^2}$$

(c) If
$$I_n = \int_0^{\pi/4} \tan^n x \, dx$$
, then show that

$$I_n + I_{n-2} = \frac{1}{n-1}$$

and deduce the value of I_5 .

5

5

(Old Course)

Full Marks: 80 Pass Marks: 32

Time: 3 hours

- 1. State which of the following statements are true and which are false: $1 \times 7 = 7$
 - A function of the type f(x, y) = 0 is called (a) implicit function.
 - (b) If $x = \phi(a)$, $y = \psi(t)$, then $\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx}$
 - (c) The value of

$$\int_0^{\pi/2} \sin^6 x \, dx$$

- is $\frac{5\pi}{32}$. The union of two closed sets is not a (d) closed set.
- The set of all integers is countable. (e)
- Every bounded sequence has a limit (f)point.

- (g) According to d'Alembert's ratio test, $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=l<1 \text{ means that the series}$ $\Sigma\,u_n$ is convergent.
- 2. (a) If $x^3 + y^3 3axy = 0$, then show that $\frac{dy}{dx} = \frac{ay x^2}{y^2 ax}$

(b) If
$$u = \frac{y}{z} + \frac{z}{x} + \frac{x}{y}$$
, then prove that
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$$

- (c) Show that (i) $D^{n}(x^{n}) = n!$ (ii) $D^{n}\left(\frac{1}{x+a}\right) = \frac{(-1)^{n} n!}{(x+a)^{n+1}}$ 3+3=6
- (d) Define maxima and minima of a function. Find for what values of x, the expression $f(x) = 2x^3 15x^2 + 36x + 10$ is maximum and minimum respectively, and hence find the maximum and minimum values. 2+5=7

and other at a time. Or on anilytopa

- (e) State Leibnitz theorem for the *n*th derivative of the product of two functions. Using the theorem or otherwise, show that $x^2y_2 + xy_1 + y = 0$ for $y = a \cos(\log x) + b \sin(\log x)$. 2+5=7
- 3. (a) Show that

$$\int_0^a f(x) \ dx = \int_0^a f(a-x) \ dx$$

Using this property or otherwise, prove that

$$\int_0^{\pi/2} \frac{\cos x - \sin x}{1 + \sin x \cos x} \, dx = 0$$
2+4=6

(b) Prove that

$$\int_0^{\pi/2} \sin^{2m} x \, dx = \frac{(2m)!}{\{2^m m!\}^2} \frac{\pi}{2}$$

n lo sminim bas sminer pulled to

(c) Find:

 $\int_{1}^{2} \int_{0}^{x} \frac{dx \, dy}{x^2 + y^2}$

5

(d) If $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$ and $z = r \cos \theta$, then show that

$$\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)} = r^2 \sin \theta$$

5

(e) Find Laplace transform of the function $(t+2)^2 e^t$.

3

4. (a) Define Cartesian product of two sets. Find $A \times B$ if $A = \{x \mid x = 1, 2\}$, $B = \{y \mid y = x + 2\}$. 1+3=

(b) Show that a countable union of countable sets is countable.

Or

- (c) Prove that a set is closed iff its complement is open.
- (d) What are infimum and supremum of a set? Find the infimum and supremum of the sets $S_1 = \{2, 4, 6, 8\}$ and $S_2 = \left\{\frac{1}{n}, n \in N\right\}$.

5

4

Or

- (e) If S, T are subsets of real numbers, then—
 - (i) show that $(S \cap T)' \subseteq S' \cap T'$;

(Turn Over)

P16/439

- (ii) give an example to show that $(S \cap T)'$ and $(S' \cap T')$ may not be equal. $2\frac{1}{2}+2\frac{1}{2}=5$
- (f) Define a field' stating clearly its properties. 5

Or

(g) Define a set function. For the finitely additive set function f defined on the field F, prove that

$$f(A \cup B) + f(A \cap B) = f(A) + f(B), \forall A, B \in F$$

1+4=5

- 5. (a) Define convergent, divergent and oscillatory series. Give an example of a series used in statistical analysis, which is convergent.

 3+1=4
- (b) What is a monotonic sequence? If $x_n = \frac{3n-1}{n+2}$, then prove that the

sequence $\{x_n\}$ is monotone increasing and bounded.

Or

(c) Show that the sequence $\{S_n\}$, defined by the recursion formula $S_{n+1} = \sqrt{3S_n}$, $S_1 = 1$ converges to 3.

P16/439

(Continued)

5

(d) Define Cauchy's root test and hence test for the convergence of the series where the general term is $\left(1 + \frac{1}{\sqrt{n}}\right)^{-n^{3/2}}$.

Or

(e) Show that the series

$$1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \cdots$$

is convergent.

4

(f) Show that the series

$$\Sigma \frac{3.6.9.\cdots 3n}{7.10.13.\cdots (3n+4)} x^n, x>0$$

converges for $x \le 1$ and diverges for x > 1. 5

Or

(g) Prove that every absolutely convergent series is convergent. Show that for any fixed values of x, the series $\sum_{n=1}^{\infty} \frac{\sin nx}{x^2}$ is convergent. 3+2=5

* * *