2 SEM TDC STS M 1 (N/O)

2017

(May)

STATISTICS

(Major)

Course: 201

(Mathematics for Statistics—I)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 48

Pass Marks: 14

Time: 2 hours

1. Choose the correct answer:

- 1×6=6
- (a) If $A \times B = \{(a, x), (a, y), (b, x), (b, y)\},$ then A and B are
 - (i) $A = \{a, x\}, B = \{b, y\}$
 - (ii) $A = \{a, a\}, B = \{y, y\}$
 - (iii) $A = \{a, y\}, B = \{b, x\}$
 - (iv) $A = \{a, b\}, B = \{x, y\}$

(b) One of the conditions for convergence of alternating series

$$\sum_{n=1}^{\infty} (-1)^{n-1} u_n$$

by Leibnitz test is that

(i)
$$\underset{n\to\infty}{Lt} u_n = k, k>0$$

(ii)
$$\lim_{n\to\infty} u_n = 1$$

(iii)
$$\underset{n\to\infty}{Lt} u_n = 0$$

(iv)
$$\lim_{n\to\infty} u_n \neq 0$$

(c) The *n*th derivative of the function $f(x) = e^{5x}$ is

(i)
$$e^{5x}$$

(ii)
$$5^n e^{5x}$$

(iv)
$$x^n e^{5x}$$

(d) If $x = r \cos \theta$, where r, x, θ are variables,

then
$$\frac{\partial x}{\partial r}$$
 is

(i)
$$\cos \theta$$

(ii)
$$r \sin \theta$$

(e) Which one of the following is not true for the function f(x)?

(i)
$$\int_a^b f(x) dx = \int_a^b f(t) dt$$

(ii)
$$\int_a^b f(x) dx = -\int_b^a f(x) dx$$

(iii)
$$\int_0^a f(x) dx = \int_0^a f(a-x) dx$$

(iv)
$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$
, $f(x)$ is odd

(f) The value of $\int_0^{\pi/2} \cos^5 x \, dx$ is

(i)
$$\frac{15}{8}$$

$$(ii)$$
 $\frac{8}{15}\pi$

(iii)
$$\frac{8}{15}$$

(iv)
$$\frac{8}{15}\frac{\pi}{2}$$

2. (a) Define partition of sets. Let $A = \{2\}$, $B = \{1, 3\}$, $C = \{4, 6\}$ and $D = \{1, 2, 3, 4, 5, 6\}$. Is $\{A, B, C\}$ a partition of D? Justify.

3

- (b) Define countable set, equivalent sets and union of sets. Give one example in each case.
- 3. (a) Define limit point of a sequence. Prove that a sequence cannot converge to more than one limit. 1+5=6

(b) Define divergent sequence. Give an example. Show that the sequence $\{S_n\}$ where

Or

$$S_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} \quad \forall n \in \mathbb{N}$$
 is bounded and monotonic increasing.
$$2+4=6$$

4. (a) Give the d' Alembert's ratio test. Using the test or otherwise, prove that the series

$$\sum_{x=0}^{\infty} \frac{xe^{-\lambda}\lambda^x}{\lfloor x \rfloor}, \ \lambda > 0$$

is convergent.

2+4=6

3

Or

(b) When is a series said to be convergent?

Prove that every absolutely convergent series is convergent.

5. (a) Differentiate $\sin x$ w.r.t. x^2 .

2

(b) Show that $f(x) = e^x$ does not have maxima or minima.

2

6. Answer any two :

5×2=10

(a) Define increasing and decreasing functions. Find the intervals in which the function

$$f(x) = [x(x-2)]^2$$

is an increasing function.

1+4=5

(b) If $u = \log(x^2 + y^2)$, then prove that

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial u^2} = 0$$

5

(c) A random sample of size 400 is to be collected from two villages A and B for an economic survey. The cost of collecting m units from A and n units from B is given by the cost function

$$f(m, n) = 3m^2 + mn + 2n^2 + 250$$

Use the method of Lagrange's multiplier to determine m and n in such a way that the cost of collecting data is minimum.

5

7. (a) Evaluate the following with the help of integration:

Lt
$$n \to \infty$$
 $\left[\frac{n}{(n+1)^2} + \frac{n}{(n+2)^2} + \frac{n}{(n+3)^2} + \dots + \frac{n}{(n+n)^2} \right]$

Or

- (b) Obtain a reduction formula for $\int \sin^n x \, dx$ and hence evaluate $\int \sin^3 x \, dx$.
- 8. (a) If $x = \frac{u}{u+v}$, y = u+v, find $J\left(\frac{u, v}{x, y}\right)$.

(b) Evaluate:

$$\int_{y=2}^{3} \int_{x=0}^{y-1} \frac{dy dx}{y}$$

5

5

Full Marks: 80 Pass Marks: 32

Time: 3 hours

1. Choose the correct answer:

 $u(x, y) = 2x^2 + 3x^2y$

then $\frac{\partial u}{\partial u}$ is given by

(i)
$$3x^2$$

(ii)
$$2x^2 + 6x$$

(b) If f(c) is minimum of f(x), then

(i)
$$f'(c) = 0$$

(ii)
$$f'(c) \neq 0$$

(iii)
$$f'(c) > 0$$
, always

(iv)
$$f'(c) < 0$$
, always

1×8=8

(c) If
$$F(t) = 1$$
, then $f(s) = L\{F(t)\}$ is

(i)
$$\frac{1}{s}$$

(ii)
$$\frac{1}{s-1}$$

(iii)
$$\frac{1}{s+1}$$

(iv)
$$\frac{1}{s^2}$$

(d) The value of
$$\int_0^{\pi/2} \sin^4 x \, dx$$
 is

(i)
$$\frac{3\pi}{16}$$

(ii)
$$\frac{16\pi}{3}$$

(iii)
$$\frac{3\pi}{8}$$

(e) If
$$A = \{1, 2\}$$
, then power set $P(A)$ of A is

(ii)
$$\{\phi, \{1\}, \{2\}, \{1, 2\}\}$$

(iv)
$$\{\{\phi\}, \{1, 2\}\}$$

- (f) Which one of the following is not true for the sets A and B?
 - (i) $A \cap A = \emptyset$
 - (ii) $A \cap A = A$
 - (iii) $A \cap B = B \cap A$
 - (iv) $A \cup B = B \cup A$
 - (g) A sequence is said to be monotonic if it is
 - (i) strictly increasing
 - (ii) strictly decreasing
 - (iii) increasing only
 - (iv) either monotonic increasing or monotonic decreasing
 - (h) If $l = Lt_{n \to \infty} u_n^{1/n}$, then Cauchy's root test fails if
 - (i) l>1
 - (ii) l = 1
 - (iii) 1<1
 - (iv) l=0
- 2. (a) Define maxima and minima of a function.
- (b) Differentiate x^5 w.r.t. x^2 .

2

2

P7/491

(Turn Over)

3. Answer any two:

 $7 \times 2 = 14$

(a) State and prove Leibnitz theorem for nth derivative of product of two functions. Also find $\frac{dy}{dx}$ if

$$x^3 - xy^2 + 3y^2 + 4 = 0 5 + 2 = 7$$

(b) Define monotonically increasing and decreasing functions of x. Find the maximum value of the function

$$f(x) = 41 - 72x - 18x^2$$
 2+5=7

(c) What is Lagrange's undetermined multiplier λ ? If $z = \frac{x^2y^2}{x+y}$, then show

that
$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 3z$$
. 2+5=7

4. Answer any three:

6×3=18

(a) If
$$u = \frac{x_2 x_3}{x_1}$$
, $v = \frac{x_1 x_3}{x_2}$, $w = \frac{x_1 x_2}{x_3}$, find
$$J\left(\frac{u, v, w}{x, y, z}\right)$$

6

(b) Define Laplace Transform (LT) of a function F (t) and give one application of LT in statistics. Find LT of the function

$$F(t) = 2t^n + 26e^{2t}$$
 2+4=6

(c) Evaluate:

 $\int_{x=0}^{1} \int_{u=x}^{\sqrt{x}} (x^2 + y^2) \, dx \, dy$

(d) Obtain a reduction formula for $\int_0^{\pi/2} \cos^n x \, dx$

and hence evaluate

$$\int_0^{\pi/2} \cos^3 x \, dx \qquad 5+1=6$$

6

(e) Using the properties of definite integrals, show that

$$\int_0^\pi \frac{x \, dx}{1 + \sin x} = \pi$$

- 5. (a) What is partition of sets? Write down two important properties of partition of sets. 2+2=4
 - (b) Define union and intersection of sets. Give example. If $A = \{1, 2, 3, 4, 5\}$ and $B = \{2, 4, 6\}$, find the difference of sets A - B.
 - (c) Define equivalent sets. Give example.

 What is limit point of a sequence of sets?

 2+2=4
- 6. (a) Prove that the Cartesian product of two countable sets is countable.

(Turn Over)

P7/491

Or

- (b) If S and T are subsets of real numbers, then show that: 3+3=6
 - (i) $S \subseteq T \Rightarrow S' \subseteq T'$
 - (ii) $(S \cap T)' \subseteq S' \cap T'$
- 7. (a) Define a sequence of real numbers. Give example.
 - (b) Define convergent and divergent sequences. 2
- 8. Answer any two: $7 \times 2 = 14$
 - (a) Prove that every convergent sequence is bounded.
 - (b) Define Leibnitz test for alternating series. Show that the series

$$\frac{1}{1^p} - \frac{1}{2^p} + \frac{1}{3^p} - \frac{1}{4^p} + \dots$$

converges for p > 0.

2+5=7

2

- (c) For any sequence $\{a_n\}$, show that $\inf a_n \le \underline{\lim} a_n \le \overline{\lim} a_n \le \sup a_n$ 7
- (d) Show that the sequence $\{a_n\}$, where

$$a_n = \left[\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(2n)^2} \right]$$

converges to 0.

1

* * *