2 SEM TDC STS M 1 (N/O)

2018

(May)

STATISTICS

(Major)

Course: 201

(Mathematics for Statistics—I)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 48
Pass Marks: 14

Time: 2 hours

1. Choose the correct answer:

1×6=6

(a) If
$$A = \{a, b, c, d, e\}$$
, $B = \{a, c\}$, $C = \{b, d, e\}$, $D = \{b\}$, $E = \{d, e\}$, then which one of the following is not a partition of the set A ?

(i) $\{B, D, E\}$

(ii) $\{B, C, D, E\}$

(iii) $\{B, D\}$

(iv) {A}

- (b) Which of the following is not equivalent to $A \subset B$?
 - (i) $A-B=\phi$
 - (ii) $A \cap B = A$
 - (iii) $A \cup B = B$
 - (iv) None of the above
- (c) By Cauchy's root test $Lt(u_n)^{\frac{1}{n}} > 1$ means a positive term series $\sum u_n$ is
 - (i) convergent
 - (ii) divergent
 - (iii) oscillatory
 - (iv) convergent and to 1 only
- (d) If $S_{n+1} \ge S_n$, then the sequence $\{S_n\}$ is
 - (i) monotonic increasing
 - (ii) strictly increasing
 - (iii) monotonic decreasing
 - (iv) oscillatory
- (e) The third derivative of e^{-2x} is

- (i) 3e^{-2x}
- (ü) –8e^{–2x}
- (iii) $-8e^{-8x}$
- (iv) $-8e^{-6x}$

(f)
$$\int_a^b f \, dx = \int_a^c f \, dx + \int_c^b f \, dx$$

- (i) for any c
- (ii) for a < c < b
- (iii) c is exterior to the interval (a, b)
- (iv) for all $c \neq 0$
- 2. (a) Define a set function. Find $A \times (B \cap C)$, where $A = \{a, b, c\}$, $B = \{c, d\}$, $C = \{d, e, f\}$.
 - (b) Define countable set, equivalence of sets and union of sets. Give one example in each case.
- 3. (a) Prove that the Cartesian product of two countable sets is countable.

Or

(b) Define a bounded sequence. If $\{a_n\}$ is a bounded sequence such that $a_n > 0$ for all $n \in \mathbb{N}$, then show that

$$\underline{\lim} \left(\frac{1}{a_n} \right) = \underline{\frac{1}{\lim a_n}}, \text{ if } \overline{\lim a_n} > 0$$
1+5=6

3

4. (a) Define Cauchy's root test and hence test for the convergence of the series where the general term is

$$\left(1 + \frac{1}{\sqrt{n}}\right)^{-n^{3/2}}$$
2+4=6

Or

(b) What is a monotonic sequence? Show that the sequence $\{S_n\}$ is monotonic increasing, where

$$S_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}, \ \forall \ n \in \mathbb{N}$$

5. (a) Differentiate x^5 w.r.t. x^2 .

Differentiate x^* w.r.t. x^* .

(b) If $x = r\cos\theta$, $y = r\sin\theta$, then show that

$$r = \sqrt{x^2 + y^2}$$
, $\theta = \tan^{-1} \frac{y}{x}$

6. Answer any two:

5×2=10

(a) State Leibnitz theorem for the *n*th derivative of the product of two functions and hence find *n*th derivative of $y = x^2 e^{ax}$.

8P/**697**

(Continued)

(b) If
$$z = \frac{x^2y^2}{x+y}$$
, then prove that
$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 3z$$

- (c) Using Lagrange's method of undetermined multiplier, find x and y in such way that x+y=100 and the product xy becomes maximum.
- 7. (a) Obtain a reduction formula for $\int \tan^n x dx \quad \text{and} \quad \text{hence} \quad \text{evaluate}$ $\int \tan^5 x dx. \quad 4+1=5$

Or

(b) If
$$f(x) = f(a+x)$$
, then prove that
$$\int_0^{na} f(x)dx = n \int_0^a f(x)dx$$

 $\int_1^2 \int_0^x \frac{dx \, dy}{x^2 + y^2}$

Or

(b) If $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$ and $z = r \cos \theta$, then show that

$$\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)} = r^2 \sin \theta$$

5

5

5

(Old Course)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

1. Choose the correct answer:

1×8=8

- (a) The function $f(x) = x^2$, $x \in (0, \infty)$ is
 - (i) strictly decreasing
 - (ii) strictly increasing
 - (iii) non-increasing
 - (iv) non-decreasing
- (b) The second derivative of the function $y = e^{ax}$ is
 - (i) aeax
 - (ii) a²e^{ax}
 - (iii) $2a^2e^{ax}$
 - (iv) e^{ax}/a^2

- (i) for any c_1 , c_2
- (ii) $a < c_1 < c_2 < b$
- (iii) for all $c_2 > c_1$
- (iv) for all $c_1 \neq 0$, $c_2 \neq 0$
- (d) The value of $\int_0^{\pi/2} \sin^6 x \, dx$ is
 - (i) $\frac{5\pi}{64}$
 - (ii) $\frac{5\pi}{32}$
 - (iii) $\frac{5}{32}$
 - (iti) $\frac{32\pi}{5}$
- (e) Which one of the following is not true for equivalence of sets A, B and C?
 - (i) if $A \sim B$, then $A \sim C$
 - (ii) A ~ A, B ~ B, C ~ C
 - (iii) if A ~ B, B ~ C, then A ~ C
 - (iv) if $A \sim B$, then $B \sim A$

(Turn Over)

(f) If
$$A = \{a, b, c\}$$
, $B = \{b, d, e\}$, then

(i)
$$A \cup B = \{a, b, c, d, e\}$$

(ii)
$$A \cup B = \{a, b, c, b, d, e\}$$

(iii)
$$A \cap B = \{a, c, d, e\}$$

(iv)
$$A \cap B = \emptyset$$

- (g) If the series $\sum u_n$ is absolutely convergent, then $\sum u_n$
 - (i) is always convergent
 - (ii) is always divergent
 - (iii) may or may not be convergent
 - (iv) is convergent under certain conditions

$$\mathop{\rm Lt}_{n\to\infty}(u_{n+1}/u_n)=l$$

then the D'Alembert's ratio test fails if

(i)
$$l = 1$$

(
$$\ddot{u}$$
) $l = 0$

(iv)
$$l > 1$$

2.	(a)	Differentiate $\sin x$ w.r.t. x^2 .	3
	(b)	If $f(x, y) = 2x^2 - 3xy + 6x^3y$, find $\frac{\partial f}{\partial x}$	
		and $\frac{\partial f}{\partial y}$.	2
	(c)	Show that $D^n(x^n) = \underline{n}$	3
3.	Ans	swer any two: 5×2=	10
	(a)	If $x^3 + y^3 - 3axy = 0$, then show that	
		$\frac{dy}{dx} = \frac{ay - x^2}{y^2 - ax}$	5
	(b)	Define minima and maxima of a function $f(x)$. Find for what value(s) of x the function $f(x) = 41 - 72x - 18x^2$ attains its maximum.	5
	(c)	If $y = a\cos(\log x) + b\sin(\log x)$, then show that $x^2y_2 + xy_1 + y = 0$.	5
4.	(a)	Show that $\int_0^a f(x)dx = \int_0^a f(a-x)dx$	3
	(b)	Define Laplace transform of a function $F(t)$ and give two of its applications in statistics.	3
P/6	597	(Turn Ov	er)

8P/**697**

5. Answer any two:

6×2=12

(a) Evaluate:

6

$$\int_{0}^{3} \int_{1}^{2} xy(1+x+y) \, dx \, dy$$

(b) If u = x/(x+y), v = x+y, then find

$$J\left(\frac{x, y}{u, v}\right)$$

6

6

(c) Using the properties of definite integrals, show that

$$\int_0^{\pi/2} \frac{\sin x - \cos x}{\sin x + \cos x} dx = 0$$

(d) Obtain a reduction formula for

$$\int \sin^n x \, dx$$

Find Laplace transform of the function

$$\frac{1}{2}(e^{at}+3)$$

4+2=6

6. (a) Define set, power set and countable set.
Give example for each.

3

(b) Define a field and a set function.

3

8P/697

(Continued)

7. Answer any two:

6×2=12

(a) Define limit point of a set. If S and T are subsets of real numbers, then show that

 $(S \cup T)' = S' \cup T' \qquad 1+5=6$

- (b) When is a set said to be closed? Prove that a set is closed iff its complement is open. 1+5=6
- (c) Define Cartesian product of two sets.

 Show that a countable union of countable sets is countable. 1+5=6
- 8. (a) Define bounded sequence and convergence of sequence.
 - (b) Define positive term series and give the comparison test of first type for such series.
- 9. Answer any two :

5×2=10

4

- (a) Prove that every bounded sequence has a limit point.
- (b) Show that the sequence $\{S_n\}$, where

$$S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}, \quad \forall \ n \in \mathbb{N}$$

is convergent.

5

(Turn Over)

8P/697

(c) Test the convergence of the series

$$\sum \frac{n^2 - 1}{n^2 + 1} x^n, \quad x > 0$$

(d) Show that the series

$$\sum_{x=0}^{\infty} \frac{e^{-\lambda x} \lambda^x}{|x|}, \quad \lambda > 0$$

is convergent. What is the importance of the result in statistics?

4+1=

