2 SEM TDC STS M 1 (N/O)

2020

STATISTICS

(Major)

Course: 201

(Mathematics for Statistics—I)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 48
Pass Marks: 14

Time: 2 hours

- 1. Choose the correct answer from the following alternatives: 1×5=5
 - (a) If $S_{n+1} \ge S_n$, then the sequence $\{S_n\}$ is
 - (i) monotonic
 - (ii) strictly increasing
 - (iii) monotonic decreasing
 - (iv) oscillatory

20P/806

(Turn Over)

- If $l = Lt_{n \to \infty} u_n^{\frac{1}{n}}$, then Cauchy's root test fails if

 - (i) l > 1 (ii) l = 1
 - (iii) 1 < 1
- (iv) l=0
- If f(x) be a maximum or minimum at (c) x = c and if f'(c) exists, then
 - (i) f'(c) = 0
 - (ii) f''(c) = 0
 - (iii) f'(c) is negative
 - (iv) f'(c) is positive
- If $x = r \cos \theta$, where r, x, θ (d) variables, then $\frac{\partial x}{\partial r}$ is
 - (i) $\cos \theta$
- (ii) $r \sin \theta$
- (iii) sin 0

- (iv) 0
- The value of $\int_0^{\pi/2} \sin^4 x \, dx$ is (e)
 - (i) $\frac{3\pi}{16}$
 - (ii) $\frac{16\pi}{3}$
 - (iii) $\frac{3\pi}{8}$
 - (iv) None of the above

2. Answer the following in brief:

 $2 \times 5 = 10$

- (a) Define countable set and equivalent sets. Give one example in each case.
- (b) What is divergent sequence? Give an example of it.
- (c) Show that the function $f(x) = x^2 6x$ is increasing for x > 3.
- (d) Show that $f(x) = e^x$ does not have maxima or minima.
- (e) Prove that

$$\int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx$$

3. (a) Define limit point of a sequence.

Prove that a sequence can not converge to more than one limit. 1+5=6

Or

(b) Define a bounded sequence. If $\{a_n\}$ is a bounded sequence such that $a_n > 0$ for all $n \in \mathbb{N}$, then show that

$$\underline{\lim} \left(\frac{1}{a_n} \right) = \frac{1}{\overline{\lim} \ a_n} , \quad \text{if} \quad \overline{\lim} \ a_n > 0$$

4. (a) When is a series said to be convergent? Prove that every absolutely convergent series is convergent. 1+5=6

Or

(b) Define Cauchy's root test. Show that a positive term series

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

is convergent iff p > 1.

2+4=6

5. (a) Define maxima and minima of a function. Find for what values of x, the expression

$$f(x) = 2x^3 - 15x^2 + 36x + 10$$

is maximum and minimum respectively and hence find the maximum and minimum values. 1+5=6

Or

(b) If $u = \frac{y}{z} + \frac{z}{x} + \frac{x}{y}$, then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$

6

6. (a) If $\sin y = x \sin (a+y)$, then prove that

$$\frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}$$

5

and Or

(b) State and prove Leibnitz theorem.

5

20P/806

(Continued)

- **7.** Answer any two of the following: $5 \times 2 = 10$
 - (a) Obtain a reduction formula for

$$\int_0^{\pi/2} \cos^n x \, dx$$

and hence evaluate

$$\int_0^{\pi/2} \cos^3 x \, dx$$

(b) If $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$ and $z = r \cos \theta$, then show that

$$\frac{\partial (x, y, z)}{\partial (r, \theta, \phi)} = r^2 \sin \theta$$

(c) Evaluate:

$$\int_{x=0}^{1} \int_{y=x}^{\sqrt{x}} (x^2 + y^2) dx dy$$

(d) Using the properties of definite integrals, show that

$$\int_0^\pi \frac{x \, dx}{1 + \sin x} = \pi$$

(Old Course)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

1. Choose the correct answer from the following alternatives in each question:

1×8=8

- (a) The function f(x) = |x| at x = 0 is
 - (i) continuous and differentiable
 - (ii) continuous but not differentiable
 - (iii) not continuous but differentiable
 - (iv) neither continuous nor differentiable
- (b) The function defined by $f(x) = x^{\frac{1}{x}}$ has maximum at
 - (i) 1

(ii) $e^{1/e}$

(iii) $\log_2 e$

- (iv) 2
- (c) The value of $\int_0^{\pi/2} \sin^4 x \, dx$ is
 - (i) $\frac{3\pi}{16}$
 - (ii) $\frac{3\pi}{8}$
 - (iii) $\frac{3}{16}$
 - (iv) None of the above

- (d) $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$, for all values of c, such that
 - (i) a < c < b
 - (ii) c > 0
 - (iii) c > a
 - (iv) None of the above
- (e) With usual notation $A \cup (B \cap C)$ is equal to
 - (i) $(A \cup B) \cap (A \cup C)$
 - (ii) $A \cap (B \cap C)$
 - (iii) $(A \cap B) \cup (A \cap C)$
 - (iv) A∪ (B∪ C)
- (f) If $A = \{1, 2\}$, then the power set P(A) of A is
 - (i) {{1}, {2}, {1, 2}}
 - (ii) $\{\emptyset, \{1, 2\}, \{1\}, \{2\}\}$
 - (iii) {{1}, {2}}
 - (iv) $\{\{\emptyset\}, \{1, 2\}\}$

- By Cauchy's root test, $\lim_{n \to \infty} (u_n)^{1/n} > 1$ (g)means a positive term series $\sum u_n$ is
 - (i) convergent
 - (ii) divergent
 - (iii) oscillatory
 - (iv) convergent and to 1 only
- (h) A convergent sequence is
 - always bounded (i)
 - (ii) bounded above only
 - (iii) bounded below only
 - (iv) neither bounded above nor bounded below
- **2.** Answer the following: $4\times4=16$

- (a) (i) Differentiate $\sin x$ w.r.t. x^2
 - (ii) If $x = r \cos \theta$, $y = r \sin \theta$, then show that

$$r = \sqrt{x^2 + y^2}$$
, $\theta = \tan^{-1}(y/x)$

If $L\{F(t)\} = f(s)$ is the Laplace (b) transform (LT) of the function F(t), then find

$$L\left\{t^n+\frac{1}{6}\right\}$$
 and $L\left\{e^{\alpha t}\right\}$

- (c) What are the infimum and supremum of a set? Find the infimum and supremum of the sets $S_1 = \{2, 4, 6, 8\}$ and $S_2 = \left\{\frac{1}{n}, n \in N\right\}$.
- (d) Define real sequence. Prove that a sequence converge to more than one limit.
- 3. Answer any two of the following: $7 \times 2 = 14$
 - (a) Define maxima and minima of a function. Find for what values of x, the expression

$$f(x) = 2x^3 - 15x^2 + 36x + 10$$

is maximum and minimum respectively, and hence find the maximum and minimum values. 2+5=7

- (b) State Leibnitz theorem for the *n*th derivative of the product of two functions. Using the theorem or otherwise, show that $x^2y_2 + xy_1 + y = 0$ for $y = a\cos(\log x) + b\sin(\log x)$. 2+5=7
- (c) (i) Find $\frac{dy}{dx}$, when $x = a \cos^2 t$ and $y = a \sin^3 t$.
 - (ii) If $x^y = e^{x-y}$, then prove that $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$

(Turn Over)

3

4

- **4.** Answer any two of the following: $7 \times 2 = 14$
 - (a) Obtain the reduction formula for $\int_0^{\pi/2} \sin^n x \, dx$, where n is a positive integer and hence evaluate,

$$\int_0^{\pi/2} \sin^6 x \, dx$$

(b) (i) Evaluate

$$\int_0^a \int_0^{\sqrt{a^2 - y^2}} (\sqrt{a^2 - x^2 - y^2}) \, dy \, dx$$

(ii) Prove that

$$\int_{-a}^{a} f(x) = 0; if f(-x) = -f(x)$$

$$= 2 \int_{0}^{a} f(x) dx; if f(-x) = f(x)$$

(c) (i) If u = x + y and $v = \frac{u}{x + y}$, then find

$$J\left(\frac{x,\,y}{u,\,v}\right)$$

- (ii) Define Laplace transform of a function F(t) and mention two of its important properties.
- (d) Evaluate

$$\lim_{n \to \infty} \left[\frac{n}{(n+1)^2} + \frac{n}{(n+2)^2} + \dots + \frac{n}{(n+n)^2} \right]$$

with the help of definite integral.

(Continued)

3

20P/806

- **5.** Answer any two of the following: $7 \times 2 = 14$
 - (a) (i) Give one example of each of equivalent set, countable set and union of sets.
 - (ii) Define a set function. Find $A \times (B \cap C)$, where $A = \{a, b, c\}$, $B = \{c, d\}$, $C = \{d, e, f\}$. 2+2=4
 - (b) Define countable set with examples.

 Prove that the set of rational numbers in [0, 1] is countable. 2+5=7
 - (c) What is partition of sets? Write down two important properties of partition of sets. Construct the smallest field from a partitioned class of sets $\{A_1, A_2, A_3\}$. 1+2+4=7
 - (d) What is class of sets? Define ring, semi-ring and field. Show that a class of sets closed under complementation and finite unions is a field. 1+3+3=7
 - **6.** Answer any two of the following: $7 \times 2 = 14$
 - (a) Show that the sequence $\{a_n\}$ defined by

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{9}{a_n} \right), \quad n \ge 1, \quad a_1 > 0$$

is convergent and it converges to 3. 5+2=7

(Turn Over)

3

(b) Give a comparison test for positive term series Σu_n and Σv_n . Test the convergence of the series

$$\Sigma [(n^3+1)^{1/3}-1]$$
 3+4=7

(c) Define a bounded sequence and show that the sequence $\{S_n\}$ is bounded, where

$$S_n = 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}, \quad \forall \ n \in \mathbb{N}$$
 2+5=7

