4 SEM TDC CHM M 1 (N/O)

2017

(May)

CHEMISTRY

(Major)

Course: 401

(Physical Chemistry)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 48
Pass Marks: 14

Time: 2 hours

1. Select the correct answer:

1×5=5

- (a) The solution of KCl which has the lowest value of equivalent conductance is
 - (i) 1 M
 - (ii) 0·1 M
 - (iii) 0.01 M
 - (iv) 0.001 M

P7/591

(Turn Over)

- (b) At infinite dilution, the equivalent conductances of CH₃COONa, HCl and CH₃COOH are 91 mho cm² eq⁻¹, 426 mho cm² eq⁻¹ and 391 mho cm² eq⁻¹ respectively at 25 °C. The equivalent conductance of NaCl at infinite dilution is
 - (i) 126 mho cm² eq⁻¹
 - (ii) 209 mho cm² eq⁻¹
 - (iii) 391 mho cm² eq⁻¹
 - (iv) 908 mho cm² eq⁻¹
- (c) In a galvanic cell
 - (i) chemical reaction produces electrical energy
 - (ii) electrical energy produces chemical reaction
 - (iii) reduction occurs at anode
 - (iv) oxidation occurs at cathode
- (d) E° for the reaction

$$Fe + Zn^{2+} \rightarrow Zn + Fe^{2+}$$

is -0.35 V. The given cell reaction is

- (i) feasible
- (ii) not feasible
- (iii) in equilibrium
- (iv) not predictable

- (e) The enthalpy of vaporization of a liquid is 30 kJ mol⁻¹ and entropy of vaporization is 75 J mol⁻¹ K⁻¹. The boiling point of the liquid at one atmosphere is
 - (i) 250 K
 - (ii) 400 K
 - (iii) 450 K
 - (iv) 600 K
- 2. Answer any five of the following questions:

 $2 \times 5 = 10$

- (a) Molar conductance at infinite dilution of weak electrolytes cannot be determined by graphical methods. Explain why.
- (b) Describe standard hydrogen electrode.
- (c) State and explain Walden's rule.
- (d) Calculate the potential of hydrogen electrode in contact with a solution whose pH is 10.
- (e) Describe how work function varies with temperature at constant volume.
- (f) The enthalpy and entropy change for a chemical reaction are -2.5×10^3 call and 7.4 call deg^{-1} respectively. Determine whether the reaction is spontaneous or not at 298 K.

UNIT-I

3. Answer any two of the following questions:

41/2×2=9

- (a) Deduce an expression for efficiency of a Carnot engine working between two temperatures T_1 and T_2 .
- (b) (i) Explain how the third law of thermodynamics can be used for the evaluation of absolute entropy of a substance.
 - (ii) Calculate the change in Gibbs' free energy accompanying the compression of 1 mole of CO₂ at 57 °C from 5 atm to 50 atm. Assume that CO₂ behaves like an ideal gas.

(c) (i) Prove that

$$\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial P}{\partial S}\right)_{V}$$
21/2

(ii) Write the physical significance of Helmholtz free energy and Gibbs' free energy.

2

2

UNIT-II

4. Answer any two of the following questions:

 $7 \times 2 = 14$

- (a) (i) What are ionic mobilities? Derive a relation between ionic mobility and molar ionic conductance. 1+3=4
 - (ii) What is abnormal transport number of an ion? Under what condition, an aqueous solution of CdI₂ shows the negative transport number of Cd²⁺ ion? 1+2=3
- (b) Define specific, molar and equivalent conductances. Explain why specific conductance decreases with dilution but the molar conductance increases.

3+4=7

(c) (i) Explain how the degree of hydrolysis and hydrolysis constant of aniline hydrochloride can be determined from conductance measurement.

4

(ii) Sketch schematically the conductometric titration curves for a strong acid by a strong base and a strong acid by a weak base.

1½+1½=3

UNIT-III

5.	Answer any	two of the	ne following	questions:	N.
					_

5×2=10

(a) (i) Give one example each of electrode concentration cell and electrolyte concentration cell.

2

(ii) Describe how the pH of a solution can be measured with the help of a hydrogen electrode.

3

(b) (i) Derive an equation showing the effect of electrolyte concentration on electrode potential.

4

(ii) Give one example of fuel cell.

1

(c) The standard reduction potential of Cu²⁺/Cu and Ag⁺/Ag electrodes are 0.337 V and 0.799 V respectively. Construct a galvanic cell using these electrodes so that its standard e.m.f. is positive. For what concentration of Ag⁺ will the e.m.f. of the cell at 25 °C be zero if the concentration of Cu²⁺ is 0.01 M?

2+3=5

(Old Course)

Full Marks: 48
Pass Marks: 19

Time: 3 hours

1. Select the correct answers:

1×5=5

- (a) The solution of KCl which has the lowest value of equivalent conductance is
 - (i) 1 M
 - (ii) 0·1 M
 - (iii) 0.01 M
 - (iv) 0.001 M
- (b) At infinite dilution, the equivalent conductances of CH₃COONa, HCl and CH₃COOH are 91 mho cm² eq⁻¹, 426 mho cm² eq⁻¹ and 391 mho cm² eq⁻¹ respectively at 25 °C. The equivalent conductance of NaCl at infinite dilution is
 - (i) 126 mho cm² eq⁻¹
 - (ii) 209 mho cm² eq⁻¹
 - (iii) 391 mho cm² eq⁻¹
 - (iv) 908 mho cm² eq⁻¹

- (c) In a galvanic cell
 - (i) chemical reaction produces electrical energy
 - (ii) electrical energy produces chemical reaction
 - (iii) reduction occurs at anode
 - (iv) oxidation occurs at cathode
- (d) E° for the reaction

$$Fe + Zn^{2+} \rightarrow Zn + Fe^{2+}$$

is -0.35 V. The given cell reaction is

- (i) feasible
- (ii) not feasible
- (iii) in equilibrium
- (iv) not predictable
- (e) The oxidation of SO₂ by O₂ to SO₃ is an exothermic reaction. The yield of SO₃ will be maximum if
 - (i) temperature is increased and pressure is kept constant
 - (ii) temperature is reduced and pressure is increased
 - (iii) both temperature and pressure are increased
 - (iv) both temperature and pressure are reduced

2. Answer any five of the following questions:

2×5=10

- (a) Molar conductance at infinite dilution of weak electrolytes cannot be determined by graphical methods. Explain why.
- (b) Describe standard hydrogen electrode.
- (c) State and explain .Walden's rule.
- (d) Calculate the potential of hydrogen electrode in contact with a solution whose pH is 10.
- (e) Write the effect of temperature and pressure on chemical potential.
- (f) Explain the term 'partial molar quantities'.
- (g) Use of NH₄NO₃ in agar bridge minimizes the liquid junction potential. Explain.

UNIT-I

3. Answer any two of the following questions:

 $7 \times 2 = 14$

(a) (i) What are ionic mobilities? Derive a relation between ionic mobility and molar ionic conductance. 1+3=4

- (ii) What is abnormal transport number of an ion? Under what condition, an aqueous solution of CaI₂ shows the negative transport number of Cd²⁺ ion? 1+2=3
- (b) (i) Define specific, molar and equivalent conductances. Explain why specific conductance decreases with dilution but the molar conductance increases. 3+2=5
 - (ii) The conductivity of 0.20 M KCl solution at 298 K is 0.0248 S cm⁻¹.

 Calculate its molar conductivity.
- (c) (i) Explain how the degree of hydrolysis and hydrolysis constant of aniline hydrochloride can be determined from conductance measurement.
 - (ii) Sketch schematically the conductometric titration curves for a strong acid by a strong base and a strong acid by a weak base.

 1½+1½=3

P7/591

(Continued)

2

4

UNIT-II

4. Answer any two of the following questions:

 $5 \times 2 = 10$

(a) (i) Give one example each of electrode concentration cell and electrolyte concentration cell.

3

2

(ii) Describe how the pH of a solution can be measured with the help of a hydrogen electrode.

5

(b) Derive an expression for the e.m.f. of a concentration cell with transference.

3

(c) (i) Derive an equation showing the effect of electrolyte concentration on electrode potential.

(ii) Write Nernst equation and calculate e.m.f. of the following cell at 298 K:

2

Fe(s) $|\text{Fe}^{2+}(0.001 \, M)||\text{H}^+(1 \, M)\text{H}_2(1 \, \text{atm}), \text{ Pt}$

Given, $E_{\text{Fe}^{2+}/\text{Fe}}^{\circ} = -0.44 \text{ V}$

UNIT-III

5. Answer any *three* of the following questions:

3×3=9

(a) Derive an expression for the change of Gibbs' potential for the following gaseous reaction:

3

 $aA + bB + \cdots \rightleftharpoons cC + dD + \cdots$

P7/591

(Turn Over)

(D)	State	and	explain	Le (Chatelier's		
	princip	ole.					
	Centron:						
(c)	Derive Gibbs-Duhem equation for two-						

component system.

3

3

- (d) (i) What is fugacity? Write its physical significance. 1+1=2
 - (ii) Write the effect of pressure on the following equilibrium:

 $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$

* * *