. Che + Maty + Bot+ Com+ 200

Total No. of Printed Pages-12

2 SEM TDC CHM M 1

2014

(May)

CHEMISTRY

(Major)

Course: 201

(Physical, Inorganic, Organic)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

Write the answers to the separate Sections in separate books

SECTION—I

(Physical Chemistry)

(Marks : 26)

1. Choose the correct answer:

1×3=3

- (a) A system absorbs 10 kJ of heat and does 4 kJ of work. The internal energy of the system
 - (i) decreases by 6 kJ
 - (ii) increases by 6 kJ
 - (iii) decreases by 14 kJ
 - (iv) increases by 14 kJ

14P-2200/983

(Turn Over)

· Chat Make Pooted Copy - 200

- (b) The bond energies of $N \equiv N$, H—H and N—H bonds are 945, 436 and 391 kJ mol⁻¹ respectively. The enthalpy of the reaction N_2 (g) + 3H₂ (g) \rightarrow 2NH₃ (g) is
 - (i) -93 kJ
 - (ii) 102 kJ
 - (iii) 90 kJ
 - (iv) 105 kJ
- (c) The favourable conditions for a spontaneous reaction are
 - (i) $T\Delta S > \Delta H$, $\Delta H = +ve$, $\Delta S = +ve$
 - (ii) $T\Delta S > \Delta H$, $\Delta H = +ve$, $\Delta S = -ve$
 - (iii) $T\Delta S = \Delta H$, $\Delta H = -ve$, $\Delta S = -ve$
 - (iv) $T\Delta S = \Delta H$, $\Delta H = +ve$, $\Delta S = +ve$

UNIT-I

Answer any two of the following:

6×2=12

2. (a) Show that the Joule-Thomson coefficient (μ_{JT}) for a van der Waals gas is given by

$$\mu_{\rm JT} = \frac{1}{C_{\rm p}} \left[\frac{2a}{RT} - b \right]$$

3

(b) Show that the value of μ_{JT} is zero for an ideal gas.

3

14P-2200/983

(Continued)

- Calculate the work done when a gas expands—
 - (a) isothermally and reversibly from volume V_1 to V_2 ;
 - (b) isothermally and irreversibly from volume V_1 to V_2 ;

from these, show that the work done in a reversible process is greater than that in an irreversible process. 2+2+2

- 4. (a) Establish the relationship between enthalpy change and internal energy change for a gaseous reaction.
 - (b) The enthalpy of fusion of water at 273 K is 6.0 kJ mol⁻¹ at constant pressure of 1 atmosphere. Calculate its value at 263 K.

Given
$$\overline{C}_{p H_2O(1)} = 74 \cdot 46 \text{ J mol}^{-1} \text{ K}^{-1}$$

 $\overline{C}_{p H_2O(s)} = 37 \cdot 2 \text{ J mol}^{-1} \text{ K}^{-1}$

(c) Show that the slope of P-V curve of an adiabatic change is greater than the slope of P-V curve for an isothermal change.

14P-2200/983

(Turn Over)

2

UNIT-II

Answer any two of the following	ng :	
---------------------------------	------	--

5½×2=11

5. (a) Deduce an expression for entropy-changes associated with the changes in volume and temperature of an ideal gas.

(b) Helium, weighing 4 g, is expanded reversibly from 1 atm to one-fifth of the original pressure at 30 °C. Calculate the change in its entropy assuming it to be an ideal gas.

11/2

4

6. (a) Write the physical significance of Helmholtz free energy and Gibbs' free energy.

2

(b) Deduce an expression showing the variation of Helmholtz free energy with volume at constant temperature for an ideal gas.

2

(c) For the reaction

$$Ag_2O(s) \to 2Ag(s) + \frac{1}{2}O_2(g)$$

calculate the temperature at which the reaction will be at equilibrium. ΔH and ΔS for the reaction is $+30 \cdot 50 \text{ kJ mol}^{-1}$ and $0 \cdot 066 \text{ kJK}^{-1} \text{ mol}^{-1}$ respectively at 1 atm pressure.

11/2

- 7. (a) State and explain Nernst heat theorem. 2
 - (b) Explain how the third law of thermodynamics can be used for the evaluation of absolute entropy of a substance.

 3½

SECTION-II

(Inorganic Chemistry)

(Marks : 27)

- 8. Choose the correct answer: 1×3=3
 - (a) Organophosphorus compounds are generally used as
 - (i) herbicides
 - (ii) fungicides
 - (iii) insecticides
 - (iv) rodenticides
 - (b) In XeF₆, xenon is
 - (i) dsp^2 hybridized
 - (ii) d^2sp^3 hybridized
 - (iii) dsp^3 hybridized
 - (iv) d^3sp^3 hybridized

14P-2200/983

(Turn Over)

- (c) The first step in the extraction of metals from an oxide/carbonate ore is
 - (i) roasting
 - (ii) calcination
 - (iii) smelting
 - (iv) carbon reduction
- **9.** Answer any three of the following: $3\times3=9$
 - (a) What are closo-, nido- and arachno-boranes? Give one example of each.
 - (b) How will you prepare XeO₃? Discuss the structure of XeF₂. 1+2=3
 - (c) Give the structure of the following: 1+2=3
 - (i) Orthosilicates
 - (ii) Cyclic silicates
 - (d) How is hydrazine prepared by Raschig's method? Discuss its reducing properties. 1+2=3
 - (e) What are zeolites? Mention its uses. 1+2=3

(Turn Over)

<2=4
3
4
7

14P-2200/983

SECTION-III

(Organic Chemistry)

(Marks: 27)

12. Choose the correct answer:

 $1 \times 3 = 3$

(a)
$$(CH_3)_2CHBr \xrightarrow{1) Li} (A_3)_2CH \longrightarrow (A$$

This is Corey-House method of synthesis of *A*, which is

(i)
$$(CH_3)_2CH-CH_2-CH_2$$

 $-CH_2-CH_3$

(ii)
$$(CH_3)_2CH-CH_2-CH(CH_3)_2$$

(iii)
$$(CH_3)_2CH-CH_2-CH_2-CH_3$$

- (iv) None of the above
- (b) Identify a reagent from the following which can easily distinguish between but-1-yne and but-2-yne:
 - (i) Bromine, CCl₄
 - (ii) H2, Lindlar catalyst
 - (iii) Dilute H2SO4, HgSO4
 - (iv) Ammoniacal Cu₂Cl₂ solution

(c) Amongst the following, the compound that can be most readily sulphonated is

		The state of the s
		(i) toluene
		(ii) benzene
		(iii) chlorobenzene
		(iv) nitrobenzene
3.	Ans	wer any six of the following: 2×6=12
	(a)	How would you synthesize an alkene by using Chugaev reaction? Explain with a suitable example that the reaction follows <i>E</i> 1 reaction pathway.
	(b)	Give an explanation for the following statement:
	meters of the other	"In the E_2 reaction a threo form gives trans-olefin while an erythro form gives a cis-olefin."
	(c)	Discuss the stereospecific nature of the following reactions by showing the structures of A and B :
	init,	cis- and trans-stilbene $\xrightarrow{C_6H_5COOH}$ (A) $\xrightarrow{H_3O^+ \text{ or } OH^{\Theta}}$ (B)
		Besteven and men's the abeliene bets

(Turn Over)

14P-2200/983

Why conjugated dienes undergo (d) 1,4-addition? Explain with a suitable example.

2

How would you synthesize styrene by (e) using Wurtz reaction? Discuss the mechanism of the reaction.

2

Write down the products obtained in the (f)following reactions: 1+1=2

(i)
$$C = C - H \xrightarrow{1) \text{ NaNH}_2} (A)$$

$$- HgSO_4, H_2SO_4 (B)$$

 $\frac{\text{HgSO}_4, \text{H}_2\text{SO}_4}{\text{Hydration}} \rightarrow (B)$

(ii)
$$\begin{array}{c} Ph \\ C = C - OC_2H_5 \\ C = C - OC_2H_5 \\ C = C - OC_2H_5 \end{array} \longrightarrow (C)$$

- Addition of HBr to propene yields (g) 2-bromopropane while in presence of benzoyl peroxide the same reaction yields 1 bromopropane. Explain and give mechanism.

2

An unsaturated hydrocarbon (A) adds (h) two equivalents of H2 and on reductive ozonolysis gives butane 1,4-dial, ethanal and propanone. Give the structure of (A), write its IUPAC name and explain the reaction involved.

14.	Ans	swer any two questions: 2×2	2=4
	(a)	Draw the conformations of cyclohexane and account for the stability of the chair form.	2
	(b)	Discuss the conformational analysis of <i>n</i> -butane and draw the potential energy curve diagram of it.	
	(c)	What is meant by inversion of chair conformation of cyclohexane? Discuss 1,3-diaxial interaction in the chair conformation of methyl cyclohexane.	.2
*	(d)	Starting from a diester of a dicarboxylic acid, how will you obtain cyclopentane? Discuss the mechanism of the reaction.	2
15.	Ans	wer any four of the following: 2×4	=8
	(a)	Define Hückel's rule of aromaticity. Mention whether the following are aromatic or not:	2
		(i) (ii) [s]	
	(b)	Giving reasons, write down the directing nature of the following groups for electrophilic substitution on benzene: (i) —CN (ii) —NH ₂ (iii) —COOR	2
		(iv) —OCOR	

(c) Complete the following reaction and write its mechanism:

2

$$+ CH_3-CH_2-CH_2CI \xrightarrow{anh. AlCl_3}$$
?

(d) Complete the following reactions: 1+1=2

1..

(i)
$$\frac{1) \text{ B}_2 \text{H}_6 \text{ in THF}}{2) \text{ H}_2 \text{O}_2 / \text{OH}^-}$$

(ii)
$$CH_3 \xrightarrow{\text{CH}_3} A \xrightarrow{\text{Alk. KMnO}_4} A \xrightarrow{\Delta} B$$

(e) Chlorine is ortho-para director towards aromatic electrophilic substitution reaction but ring deactivator. Explain.

2

(f) An aromatic hydrocarbon of the molecular formula C₉H₁₂ upon oxidation gives a dibasic acid C₈H₆O₄. Nitration of this dibasic acid yields only one mononitro derivative. Suggest the structure of the arene.