4 SEM TDC CHM M 1

2014

(May)

CHEMISTRY

(Major)

Course: 401

(Physical Chemistry—I)

Full Marks: 48
Pass Marks: 19

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Select the correct answer:

 $1 \times 5 = 5$

- (a) The correct order of the mobility of the alkali metal ions in aqueous solution is
 - (i) $K^+ > Rb^+ > Na^+ > Li^+$
 - (ii) $Rb^+ > K^+ > Na^+ > Li^+$
 - (iii) $Li^+ > Na^+ > K^+ > Rb^+$
 - (iv) $Na^+ > K^+ > Rb^+ > Li^+$

- (b) The conductivity of a saturated solution of BaSO₄ is 3.06×10^{-6} ohm⁻¹ cm⁻¹ and its equivalent conductance is 1.53 ohm⁻¹ cm² eq⁻¹. The solubility product of BaSO₄ will be
 - (i) 4×10^{-12}

A SEM WELL CHIN M

- (ii) 2.5×10⁻⁹
- (iii) 2.5×10⁻¹³
- (iv) 4×10^{-6}
- (c) When one faraday of electricity is passed through CuSO₄ solution, number of atoms formed at cathode will be
 - (i) 6.02×10^{23}
 - (ii) 3·01×10²³
 - (iii) 2
 - (iv) 6.02×10^{-23}
- (d) For a spontaneous reaction, ΔG , equilibrium constant K and E_{cell}° will be respectively
 - (i) -ve, >1, +ve
 - (ii) +ve, >1, -ve
 - (iii) -ve, <1, -ve
 - (iv) -ve, >1, -ve

- (e) The equilibrium constant K for the reaction $2HI(g)\rightleftharpoons H_2(g)+I_2(g)$ at room temperature is 2.85 and at 698 K, it is 1.4×10^{-2} . This implies that the forward reaction is
 - (i) exothermic
 - (ii) endothermic
 - (iii) neither exothermic nor endothermic
 - (iv) unpredictable
- 2. Answer any five of the following: 2×5=10
 - (a) The resistance of N/10 solution is found to be 2.5×10^3 ohms. Calculate the equivalent conductance of the solution if the cell constant is 1.15 cm^{-1} .
 - (b) Why does the variation of equivalent conductivity on dilution of a strong electrolyte differ from that of a weak electrolyte?
 - (c) In conductometric titration, the titre should be always very much concentrated than the solution to be titrated. Explain.
 - (d) Describe standard hydrogen electrode.

- (e) Give one example each of electrode concentration cell and electrolyte concentration cell.
- (f) Use of $\mathrm{NH_4NO_3}$ in agar bridge minimizes the liquid junction potential. Explain.
- (g) Show that

spontaneous?

$$\left(\frac{\partial \mu_i}{\partial P}\right)_{T, n_1, n_2, \dots} = \overline{V}_i$$

(h) Calculate the e.m.f. of the cell $Ag(s)|Ag^{+}(a=0.1)||Zn^{2+}(a=0.1)|Zn(s)$ given that the reduction potentials of Ag and Zn electrodes are 0.799 V and -0.763 V respectively. Is the reaction

Unit—I

- 3. Answer any two from the following: $7 \times 2 = 14$
 - (a) (i) Represent the variation of equivalent conductance of KCl and CH₃COOH with dilution graphically and give explanation for such variation.

- (ii) 0·1 (N) solution of sodium acetate was placed between two electrodes which were 0·72 cm apart and each has a cross-section 2·25 cm². The resistance of solution was 52·40 ohms. Find the specific and equivalent conductance. 1½+1½=3
- (b) (i) What are Wien effect and Debye-Falkenhagen effect? 1½+1½=3
 - (ii) Explain how the degree of hydrolysis and hydrolysis constant of aniline hydrochloride can be determined from conductance measurement.
- (c) (i) Explain how the transference number of an ion can be determined by moving boundary method.
- (ii) The speed ratio of silver and nitrate ions in a solution of silver nitrate electrolysed between silver electrodes is 0.916. Find the transference number of the silver and nitrate ions.

4

4

			UNIT—II	
4.	Ansv	ver a	any <i>two</i> from the following: $5\times2=$	10
	(a)	(i)	Derive an expression for the e.m.f. of a concentration cell with transference.	4
		(ii)	Write one difference between galvanic cell and electrolytic cell.	1
	(b)	(i)	Describe how the pH of a solution can be measured with the help of a hydrogen electrode.	3
	WILLIAM STATE	(ii)	means of a hydrogen electrode against a saturated calomel	
			the pressure of the hydrogen gas was maintained at 1 atm, calculate the pH and hydrogen ion activity in	
		111 60	the solution. $(E_{ref} = 0.2415 \text{ V})$	2
	(c)	(i)	Show that the e.m.f. of a cell can be used to calculate the equilibrium constant of a cell reaction.	3
		(ii)	Give a brief description of lead storage cell.	2

UNIT-III

- 5. Answer any three from the following: 3×3=9
 - (a) State Le Chatelier's principle and establish its applicability with the help of two reactions as example.
 - (b) Deduce the relationship between ΔG° and K_c of a reversible reaction.
 - (c) Discuss the effect of temperature and pressure on chemical potential.
 - (d) Derive Duhem-Margules equation.
