Total No. of Printed Pages-7

4 SEM TDC CHM M 1

2013

(May)

CHEMISTRY

(Major)

Course: 401

(Physical Chemistry-I)

Full Marks: 48
Pass Marks: 19

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Select the correct answer:

 $1 \times 5 = 5$

- (a) Conductivity of 0.01 M NaCl solution is 0.00147 ohm⁻¹ cm⁻¹. If extra 100 ml of water is added to the above solution, then this conductivity
 - (i) increases
 - (ii) decreases
 - (iii) remains unchanged
 - (iv) first increases and then decreases

- (b) The precipitate of CaF_2 ($K_{sp}=1.7\times10^{-10}$) is obtained when equal volumes of the following are mixed
 - (i) $10^{-4} M \text{ Ca}^{2+} \text{ and } 10^{-4} M \text{ F}^{-}$
 - (ii) $10^{-2} M \text{ Ca}^{2+}$ and $10^{-2} M \text{ F}^{-}$
 - (iii) $10^{-8} M \text{ Ca}^{2+}$ and $10^{-3} M \text{ F}^{-}$
 - (iv) $10^{-10} M \text{ Ca}^{2+}$ and $10^{-10} M \text{ F}^{-}$
- (c) The amount of silver (atomic mass = 108) deposited from a solution of silver nitrate when a current of 965 coulombs was passed is
 - (i) 10·8 g
 - (ii) 0·108 g
 - (iii) 1.08 g
 - (iv) 1.08×10^3 g
- (d) Given, $E_{(Cr^{3+}|Cr)}^{\circ} = -0.72 \text{ V}$ and $E_{(Fe^{2+}|Fe)}^{\circ} = -0.42 \text{ V}$. The potential for the cell

$$Cr|Cr^{3+}(0.1 M)||Fe^{2+}(0.01 M)|Fe$$

is

- (i) -0.26 V
- (ii) 0.26 V
- (iii) 0.339 V
- (iv) -0.339 V

- (e) Which of the following equilibria is not affected by pressure changes?
 - (i) $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$
 - (ii) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$
 - (iii) 2O3(g) =3O2(g)
 - (iv) $2NO_2(g) \rightleftharpoons N_2O_4(g)$
- 2. Answer any five of the following: 2×5=10
 - (a) Calculate the equivalent conductivity of $1 M H_2SO_4$ solution whose conductivity is 26×10^{-2} ohm⁻¹ cm⁻¹.
 - (b) Equivalent conductance of an electrolyte at finite concentration is less than that an infinite dilution. Explain.
 - (c) Explain why lithium ions move slower than potassium ions in water under an electric field.
 - (d) How will you determine the hydrolysis constant of aniline hydrochloride by conductance measurement?
 - (e) How will you prepare a normal calomel electrode?
 - (f) Write the chemistry of recharging of the lead storage battery, highlighting all the materials that are involved during discharging.

66

(g) The cell in which the following reaction occurs

$$2\text{Fe}^{3+}$$
 (aq) $+2\text{I}^{-}$ (aq) $\rightarrow 2\text{Fe}^{2+}$ (aq) $+\text{I}_{2}$ (s)

has $E_{\text{cell}}^{\circ} = 0.236 \,\text{V}$ at 298 K. Calculate the standard Gibbs' free energy of the cell reaction.

(h) What is fugacity? Write its physical significance.

UNIT-I

- **3.** Answer any two from the following: $7 \times 2 = 14$
 - (a) (i) What are ionic mobilities? Derive a relation between ionic mobilities and molar ionic conductances. 1+3=4
 - (ii) What is meant by abnormal transport number of an ion? Under what condition an aqueous solution of CdI₂ shows the negative transport number of Cd²⁺ ion? 1+2=3
 - (b) (i) Explain Kohlrausch law of independent migration of ions.

 The molar conductivities at infinite dilution of KCl, KNO₃ and AgNO₃ at 298 K are—

 $0.01499 \Omega^{-1} \text{ m}^2 \text{ mol}^{-1}$:

 $0.01450 \Omega^{-1} \text{ m}^2 \text{ mol}^{-1};$ $0.01334 \Omega^{-1} \text{ m}^2 \text{ mol}^{-1}$

respectively. What is the molar conductivity of AgCl at infinite dilution at this temperature? 1+2=3

- (ii) Explain clearly what is meant by asymmetric effect and electrophoretic effect. 2+2=4
- (c) (i) Define specific and molar conductance. Explain why specific conductance decreases with dilution, but the molar conduction increases.
 - The conductivity of a saturated (ii) solution of a sparingly soluble salt MX in water at 298 K is 1.887×10^{-4} ohm⁻¹ m⁻¹. molar conductivity of MX at infinite dilution at this is temperature 138·3×10⁻⁴ ohm -1 m -2 mol -1. Calculate the solubility and the solubility product of MX at this temperature.

4

UNIT-II

- **4.** Answer any *two* from the following : $5 \times 2 = 10$
 - (a) (i) Define standard electrode potential. Derive an expression for the e.m.f. of an electrode. 1+2=3
 - (ii) Discuss with diagram the variation of the e.m.f. during the potentiometric titration of a strong acid with a strong base.
 - (b) (i) What is liquid junction potential?

 How can it be minimized? 3
 - (ii) Calculate the standard reduction electrode potential of the Ni²⁺ |Ni electrode when the cell potential for the cell

 $Ni |Ni^{2+} (1 M)|| Cu^{2+} (1 M)|| Cu^{2+}$

is 0.59 V. (Given, $E_{\text{Cu}^{2+}|\text{Cu}}^{\circ} = 0.34 \text{ V}$)

- (c) (i) What are fuel cells? Discuss how the e.m.f. is generated in a hydrogen-oxygen fuel cell.
 - (ii) Discuss how the quinhydrone electrode can be used to determine the pH of a solution.

2

2

3

2

UNIT-III

- 5. Answer any three from the following: 3×3=9
 - (a) With the help of Le Chatelier's principle, work out the condition which would favour the formation of nitric oxide in the reaction $N_2(g) + O_2(g) \rightleftharpoons 2NO(g); \quad \Delta H = 180.75 \text{ kJ}$
 - (b) Explain the term chemical potential. Derive Gibbs-Duhem equation for twocomponent system.
 - (c) Derive van't Hoff equation in the form $d(\ln K_{\rm p})/dT = \frac{\Delta H^{\circ}}{RT}$
 - (d) Derive an expression for the change of Gibbs' potential for the following gaseous reaction:

$$aA + bB + ... \Rightarrow cC + dD + ...$$

(e) Explain clearly that the fugacity of a gas can both be less than or more than the pressure. Why is the fugacity of helium or hydrogen always more than the pressure?

