4 SEM TDC MTMH (CBCS) C 9

2022

(June/July)

MATHEMATICS

(Core)

Paper: C-9

(Riemann Integration and Series of Functions)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. (a) State two partitions of the interval [1, 2] such that one is a refinement of the other.
 - (b) Consider the function f(x) = x on [0, 1] and the partitions

$$P = \{x_i = \frac{i}{4}, i = 0, 1, 2, 3, 4\}$$

$$Q = \{x_j = \frac{j}{4}, j = 0, 1, 2, 3, 4, 5, 6\}$$

Determine the lower sums and upper sums of f with respect to P and Q. State the relations between L(f, P) and L(f, Q); U(f, P) and U(f, Q).

4

1

Or

For a bounded function f on [a, b] with its bounds m and M, show that $m(b-a) \le L(f, P) \le U(f, P) \le M(b-a)$ for any partition P of [a, b]

"for any partition P of [a, b].

- 2. (a) Define a tagged portion of a closed interval. Define Riemann sum of a bounded function. 1+1=2
 - (b) Let $f:[a,b] \to \mathbb{R}$ be integrable. Then show that

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx$$

3

- (c) Answer any four questions from the following: 5×4=20
 - (i) Let $f:[a,b] \to \mathbb{R}$ be bounded and monotonic. Then show that f is integrable.
 - (ii) Let $f:[a, b] \to \mathbb{R}$ be continuous. Then show that f is integrable.
 - (iii) Let $f:[a, b] \to \mathbb{R}$ be integrable. Define F on [a, b] as $F(x) = \int_a^x f(t)dt$; $x \in [a, b]$. Show that F is continuous on [a, b].
 - (iv) Let f be continuous on [a, b]. Show that there exists $c \in [a, b]$ such that

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx = f(c)$$

		(v) Show that if $f:[a,b] \to \mathbb{R}$ is integrable, then $ f $ is integrable on	
		[a, b]. (vi) Let $f:[a, b] \to \mathbb{R}$ be Riemann integrable. Then show that "f is bounded on [a, b].	
3.	(a)	Discuss the convergence of $\int_1^\infty \frac{dx}{x^p}$ for various values of p .	3
	(b)	Attempt any one:	
		(i) $B(m, n) = B(n, m)$ (ii) $\Gamma(m+1) = \underline{m}; m \in \mathbb{N}$	3
. 1	(c)	Show that $\int_0^\infty x^{n-1}e^{-x}dx$ exists.	4
4.	(a)	Define pointwise convergence of sequence of functions.	1
	(b)	Define uniform convergence of sequence of functions.	2
	(c)	State and prove Weierstrass <i>M</i> -test for the series of functions.	4
	(d)	State and prove Cauchy's criterion for uniform convergence of a series of	
		functions. Or	4
		Let $f_n: J \subseteq \mathbb{R} \to \mathbb{R}$ converge uniformly on J to f . Let $f_n \forall n$ is continuous at $a \in J$.	
		Then show that f is continuous at a .	

(e)	Let $\{f_n\}$ be a sequence of continuous functions on $[a, b]$ and $f_n \to f$ uniformly on $[a, b]$. Show that f is continuous and therefore integrable. Establish that $\int_a^b f(x)dx = \lim \int_a^b f_n(x)dx$	4
(f)	Let $f_n: (a, b) \to \mathbb{R}$ be differentiable. Let there exist functions f and g defined on (a, b) such that $f_n \to f$ and $f'_n \to g$ uniformly on (a, b) . Show that f is	
(g)	differentiable and $f' = g$ on (a, b) . Consider the function $f_n : \mathbb{R} \to \mathbb{R}$ defined by $f_n(x) = \frac{\sin nx}{n}$. Show that (f_n) converges pointwise and uniformly to	5
	the zero function.	5
(a)	Define a power series around a real number c. Give an example of power series around the origin.	. =2
(b)		
	is given by $\frac{1}{R} = \lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right $.	4
(c)	State and prove Cauchy-Hadamard theorem.	4
(d)	Show that if the series $\sum a_n$ converges, then the power series $\sum a_n x^n$	

5.

5

converges uniformly on [0, 1].