3 SEM TDC MTMH (CBCS) C 5

2023

(Nov/Dec)

MATHEMATICS

(Core)

Paper: C-5

(Theory of Real Functions)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. (a) Give an example of a proper subset of \mathbb{R} , whose cluster points are the elements of the proper subset itself.
 - (b) State whether true or false:

In the definition of $\lim_{x\to c} f$ where c is a cluster point of the domain of f, it is immaterial whether f is defined at c or not.

(c) Use the definition of limit of a function to show that

$$\lim_{x \to c} x = c$$

(d) Use ε - δ definition to establish that

$$\lim_{x \to 0} x \sin \frac{1}{x} = 0$$

- (e) Let $f: A \to \mathbb{R}$ where $A \subseteq \mathbb{R}$ and c is a cluster point of A. Show that if $\lim_{x \to c} f(x) = L$, then $\lim_{x \to c} |f(x) L| = 0$.
- (f) Define a bounded function with a suitable example.
- (g) Let $f: A \to \mathbb{R}$ where $A \subseteq \mathbb{R}$ and c is a cluster point of A. If $\lim_{x \to c} f < 0$, then show that there exists a neighbourhood $V_{\delta}(c)$ of c such that $\forall x \in A \cap V_{\delta}(c)$ with $x \neq c$, f(x) < 0.

Or

Use squeeze theorem to show that

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

(h)	Let $f: A \to \mathbb{R}$ and $g: B \to \mathbb{R}$ be
	functions where $A, B \subseteq \mathbb{R}$ and
	$f(A) \subseteq B$. If f is continuous at $c \in A$
	and g is continuous at $b = f(c) \in B$,
	then show that the composition
	$gf: A \to \mathbb{R}$ is continuous at $c \in A$.

3

(i) Let $f:[a,b] \to \mathbb{R}$ be continuous on $[a,b] \subseteq \mathbb{R}$. Then show that f is bounded on [a,b].

3

(j) Let $f: I \to \mathbb{R}$ be continuous on I, an interval. If $a, b \in I$ and $k \in \mathbb{R}$ satisfy f(a) < k < f(b), then show that there exists a point $c \in I$ between a and b such that f(c) = k.

4

(k) Let $f: I \to \mathbb{R}$ be continuous where I is a closed bounded interval in \mathbb{R} . Show that the set $f(I) = \{f(x) : x \in I\}$ is a closed bounded interval.

4

(l) Use sequential criteria of continuity to establish that Dirichlet's function is not continuous at any real numbers.

2.	(a)	State Caratheodory's theorem.	1
	(b)	State whether true or false :	1
		Let x_0 be an interior point of an interval I and the derivatives $f', f'',, f^{(n)}$ exist and continuous in a neighbourhood of x_0 with	
		$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$ and $f^{(n)}(x_0) \neq 0$. If n is odd, then f has no relative extremum at x_0 .	
	(c)	Use first derivative test to establish that f defined by $f(x) = x^3$ has no extremum at $x = 0$.	2
	(d)	Find the relative extremum of the function $f(x) = \sum_{i=1}^{n} (a_i - x)^2$ where $a_i \in \mathbb{R}$; $1 \le i \le n$.	2
	(e)	Let f be continuous on an interval $[a, b]$ and differentiable on (a, c) and (c, b) where $c \in (a, b)$. Then if there exists a neighbourhood $(c - \delta, c + \delta)$ of c in $[a, b]$ such that $f'(x) \ge 0 \ \forall x \in (c - \delta, c)$ and	

 $f'(x) \le 0 \ \forall x \in (c, c + \delta)$, then show that f

has a relative maximum at c.

Or

Let $I \subseteq \mathbb{R}$ be an interval and $f: I \to \mathbb{R}$. Let $c \in I$ and f'(c) exist and positive. Then show that there exists a number $\delta > 0$ such that f(x) > f(c) $\forall x \in (c, c + \delta)$.

- Let f be continuous on a closed interval (f)[a, b] and differentiable on an open interval (a, b). If $f'(x) = 0 \ \forall x \in (a, b)$, show that f is constant on [a, b]. Hence, show that if g is another function satisfying that it is continuous on [a, b] and differentiable on (a, b) $f'(x) = g'(x) \ \forall \ x \in (a, b),$ then there exists a constant k such that f(x) = g(x) + k on [a, b].
- (g) Use mean value theorem to show that $\frac{x-1}{x} < \log x < x-1 \text{ for } x > 1.$
- (h) State and prove Rolle's theorem and give its geometrical interpretation. 4
- (i) Use Taylor's theorem to show that $1 \frac{x^2}{2} \le \cos x \ \forall \ x \in \mathbb{R}$ 4

Or

Show that if $\alpha > 1$, then

$$(1+x)^{\alpha} > 1 + \alpha x \ \forall \ x > -1$$

and $x \neq 0$.

3. (a) Consider Cauchy's mean value theorem for two functions f and g which are continuous on [a, b] and differentiable on (a, b) with $g'(x) \neq 0 \ \forall \ x \in (a, b)$. For what value of g(x), Cauchy's mean value theorem?

(b) State Lagrange's form of remainder in Taylor's theorem for a function f defined on [a, b].

(c) State Maclaurin's infinite series expansion about x = 0 mentioning the interval of expansion.

(d) Investigate whether the function $f:(0, \infty) \to \mathbb{R}$ given by $f(x) = x \log x$ is convex or not.

(e) Investigate the function

$$f(x) = (x-3)^5(x+1)^4$$

for relative extrema.

(f) Let $f: I \to \mathbb{R}$ have second derivative on an open interval I of \mathbb{R} . Show that f is a convex function on I if and only if $f''(x) \ge 0 \ \forall \ x \in I$.

24P/61

(Continued)

1

1

2

2

(g) Expand $\cos x$ in the Maclaurin's series. 5 Or

Expand log(1+x) in the Maclaurin's series.

(h) State and prove Taylor's theorem with Cauchy's remainder. 5
