3 SEM TDC STSH (CBCS) C 5 (N/O)

2023

(Nov/Dec)

STATISTICS

(Core)

Paper: C-5

(Sampling Distribution)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 55

Pass Marks: 22

Time: 3 hours

- 1. Choose the correct answer from the following: $1 \times 5 = 5$
 - (a) If X is a continuous random variable with mean μ and variance σ^2 , then for any positive number K

$$P\{|X - \mu| \ge K\sigma\} \le \frac{1}{K^2}$$

is known as

- (i) Chebychev's inequality
- (ii) weak law of large number
- (iii) strong law of large number
- (iv) None of the above

- (b) The SE of mean of a random sample of size n from a population with variance 4 is
 - (i) 2
 - (ii) $\frac{2}{n}$
 - (iii) $\frac{2}{\sqrt{n}}$
 - (iv) $\frac{n}{2}$
- (c) The range of χ^2 -variate is
 - (i) $-\infty$ to ∞
 - (ii) 0 to ∞
 - (iii) 0 to 1
 - (iv) $-\infty$ to 0
- (d) The area of critical region depends on
 - (i) the size of type-I error
 - (ii) the size of type-II error
 - (iii) the value of the statistic
 - (iv) the number of observations

- (e) The variance of Student's t-distribution is
 - (i) n
 - (ii) 2n
 - (iii) $\frac{v}{v-2}$, where v = degrees of freedom
 - (iv) None of the above
- 2. Answer the following questions: 2×5=10
 - (a) Define convergence in probability.
 - (b) What are type-I error and type-II error?
 - (c) What are the uses of order statistics?
 - (d) Define F-statistic. Write down its probability density function.
 - (e) State additive property of χ^2 -variates.
- 3. (a) Obtain the sampling distribution of mean of a random sample drawn from a normal population with mean μ and variance σ^2 .

Or

(b) Define parameter and statistic. Explain the importance of sampling distribution of a statistic in Statistics. 2+4=6

24P/296

(Turn Over)

6

 Describe, how you would test the difference of two means in large samples.

4

5. (a) Define rth order statistic $X_{(r)}$. Obtain the joint probability density function of $X_{(r)}$ and $X_{(s)}$, r < s in a random sample of size n from a population with continuous distribution function F(x). Hence deduce the probability density function of sample range $W = X_{(n)} - X_{(1)}$.

7

Or

(b) State Chebychev's inequality. If X is the number scored in a throw of a fair die, show that the Chebychev's inequality gives $P\{|X-\mu|>2.5\}<0.47$, where μ is the mean of X, while the actual probability is zero. 2+5=7

6. (a) Define χ^2 -statistic. Derive the probability density function of χ^2 with n degrees of freedom using moment-generating function.

6

Or

(b) Show that χ^2 -distribution approaches to normality when $n \to \infty$.

7. (a) Describe the χ^2 -test of goodness of fit. 5

Or .

- (b) Find the mode of χ^2 -distribution with n degrees of freedom.
- 8. Answer any two of the following questions: $6\times2=12$
 - (a) Write down the density function of t-distribution. Describe the chief features of t-distribution curve.
 - (b) Derive the distribution of F.
 - (c) Find the variance of the t-distribution with n degrees of freedom (n > 2).
 - Obtain the mode of F-distribution with (n_1, n_2) degrees of freedom and show that it lies between 0 and 1.

(Old Course)

Full Marks: 50 Pass Marks: 20

Time: 3 hours

- 1. Choose the correct answer from the following: $1 \times 5 = 5$
 - (a) If X is a continuous random variable with mean μ and variance σ^2 , then for any positive number K

$$P\{\mid X - \mu \mid \geq K\sigma\} \leq \frac{1}{K^2}$$

is known as

- (i) Chebychev's inequality
- (ii) weak law of large number
- (iii) strong law of large number
- (iv) None of the above
- The SE of mean of a random sample of (b) size n from a population with variance 4 is
 - (i) 2
 - (ii) $\frac{2}{n}$
 - (iii) $\frac{2}{\sqrt{n}}$ (iv) $\frac{n}{2}$

- (c) The range of χ^2 -variate is
 - (i) $-\infty$ to ∞
 - (ii) 0 to ∞
 - (iii) 0 to 1
 - (iv) $-\infty$ to 0
- (d) The area of critical region depends on
 - (i) the size of type-I error
 - (ii) the size of type-II error
 - (iii) the value of the statistic
 - (iv) the number of observations
- (e) The variance of Student's t-distribution is
 - (i) n
 - (ii) 2n
 - (iii) $\frac{v}{v-2}$, where v = degrees of freedom
 - (iv) None of the above
- 2. Answer the following questions: 2×5=10
 - (a) Define convergence in probability.
 - (b) What are type-I error and type-II error?
 - (c) What are the uses of order statistics?

- (d) Define F-statistic. Write down its probability density function.
- (e) State additive property of χ^2 -variates.
- 3. (a) Obtain the sampling distribution of mean of a random sample drawn from a normal population with mean μ and variance σ^2 .

Or

- (b) Define parameter and statistic. Explain the importance of sampling distribution of a statistic in Statistics. 2+3=5
- 4. Describe, how you would test the difference of two means in large samples.
- 5. (a) Define rth order statistic $X_{(r)}$. Obtain the joint probability density function of $X_{(r)}$ and $X_{(s)}$, r < s in a random sample of size n from a population with continuous distribution function F(x). Hence deduce the probability density function of sample range $W = X_{(n)} X_{(1)}$.

Or

(b) State Chebychev's inequality. If X is the number scored in a throw of a fair die, show that the Chebychev's inequality gives P{|X-μ|>2·5}<0·47, where μ is the mean of X, while the actual probability is zero.</p>

5

3

6

6. (a) Define χ^2 -statistic. Derive the probability density function of χ^2 with n degrees of freedom using moment-generating function.

5

Or

- (b) Show that χ^2 -distribution approaches to normality when $n \to \infty$.
- 7. (a) Describe the χ^2 -test of goodness of fit. 4
 - (b) Find the mode of χ^2 -distribution with n degrees of freedom.
- 8. Answer any two of the following questions: $6\times2=12$
 - (a) Write down the density function of t-distribution. Describe the chief features of t-distribution curve.
 - (b) Derive the distribution of F.
 - (c) Find the variance of the t-distribution with n degrees of freedom (n > 2).
 - (d) Obtain the mode of F-distribution with (n_1, n_2) degrees of freedom and show that it lies between 0 and 1.
