3 SEM TDC STSH (CBCS) C 7 (N/O)

2023

(Nov/Dec)

STATISTICS

(Core)

Paper: C-7

(Mathematical Analysis)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 55

Pass Marks: 22

Time: 3 hours

- 1. Choose the correct answer from the following alternatives:
 - (a) The set N of natural numbers is.
 - (i) bounded above
 - (ii) bounded below
 - (iii) Both (i) and (ii)
 - (iv) None of the above

(Turn Over)

(b) The series Σu_n of positive terms is convergent or divergent as

$$\lim_{n\to\infty}\frac{u_n}{u_{n+1}}>1 \text{ or } <1$$

Then the test is known as

- (i) comparison test
- (ii) Raabe's test
- (iii) Cauchy's condensation test
- (iv) D'Alembert's test

(c) The series
$$\Sigma u_n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$
 is

- (i) absolute convergent
- (ii) conditional convergent
- (iii) Both (i) and (ii)
- (iv) None of the above
- (d) A function f is said to be continuous from the left at c, if

(i)
$$\lim_{x\to c+0} f(x) = f(c)$$

(ii)
$$\lim_{x\to c+0} f(x) = f(0)$$

(iii)
$$\lim_{x\to c-0} f(x) = f(c)$$

(iv) None of the above

- (e) The nth divided difference of a polynomial of nth degree is
 - (i) always zero
 - (ii) always equal to n
 - (iii) always constant
 - (iv) not defined
- (f) Lagrange's formula is useful for
 - (i) interpolation
 - (ii) extrapolation
 - (iii) inverse interpolation
 - (iv) All of the above
- 2. Answer the following questions in brief: 2×6=12
 - (a) Define derived set with examples.
 - (b) State the Cauchy's general principle of convergence.
 - (c) Define Raabe's test.
 - (d) State the Taylor's theorem with the remainder in Cauchy's form.
 - (e) State two properties of divided difference.
 - (f) Define transcendental equation with examples.
 - 3. Answer any *two* of the following questions: 5×2=10
 - (a) Show that the set of real numbers forms a complete ordered field.
 - (b) Prove that a set is closed iff its complement is open.

$$\lim_{n \to \infty} \left[\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right] = 1$$

4. (a) (i) Define infinite series. Under what condition a geometric series is convergent? Show that the series

$$\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \cdots$$

is not convergent.

1+1+3=5

(ii) Define Cauchy's nth root test. By virtue of D'Alembert's ratio test, test whether the series

$$\frac{1^2 \cdot 2^2}{1!} + \frac{2^2 \cdot 3^2}{2!} + \frac{3^2 \cdot 4^2}{3!} + \cdots$$

is convergent or divergent.

2+4=6

Or

(b) (i) Give the statement of Cauchy's condensation test. Test the convergence of the following series using Raabe's test:

1+4=5

$$\frac{\alpha}{\beta} + \frac{1+\alpha}{1+\beta} + \frac{(1+\alpha)(2+\alpha)}{(1+\beta)(2+\beta)} + \cdots$$

(ii) Show that every absolutely convergent series is convergent. Show that the series

$$\frac{\log 2}{2} + \frac{\log 3}{3} + \frac{\log 4}{4} + \cdots \infty$$

is divergent.

3+3=6

5. (a) Define uniform continuity of a function. Find the values of a and b so that f(x) may be differentiable at x = 1, where

$$f(x) = \begin{cases} x^2 + 3x + \alpha & \text{if } x \le 1 \\ bx + 2 & \text{if } x > 1 \end{cases}$$
Or
$$2+5=7$$

(b) Give the statement of Rolle's theorem. Show that

$$\frac{\nu - \mu}{1 + \nu^2} < \tan^{-1} \nu - \tan^{-1} \mu < \frac{\nu - \mu}{1 + \mu^2},$$

if $0 < \mu < \nu$ and deduce that

$$\frac{\pi}{4} + \frac{3}{25} < \tan^{-1}\frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}$$
 2+5=7

6. (a) Define the operator E and show that $E = 1 + \Delta$. Represent the function f(x) given by

$$f(x) = 2x^4 - 12x^3 + 24x^2 - 30x + 9$$

and its successive differences in factorial notation. What do you mean by interpolation? Write the statement of Newton's forward interpolation formula.

1+2+3+3=9

Or

(b) What do you mean by numerical integration? What are the basic conditions to apply Simpson's one-third rule? Solve $u_{x+1} - au_x = 0$; $a \ne 1$. Evaluate $\sqrt{12}$ by applying Newton's formula. 2+2+2+3=9

(Old Course)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

- 1. Choose the correct answer from the following:
 - (a) The set of natural numbers N is
 - (i) bounded above
 - (ii) bounded below
 - (iii) Both (i) and (ii)
 - (iv) None of the above
 - (b) If $S_{n+1} \ge S_n$, then the sequence $\{S_n\}$ is
 - (i) monotonic increasing
 - (ii) strictly increasing
 - (iii) monotonic decreasing
 - (iv) oscillatory
 - (c) The series Σu_n of positive terms is convergent or divergent as

$$\lim_{n\to\infty}\frac{u_n}{u_{n+1}}>1 \text{ or } <1$$

Then the test is known as

- (i) comparison test
- (ii) Raabe's test
- (iii) Cauchy's condensation test
- (iv) D'Alembert's test

(d) The series

$$\Sigma u_n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

is

- (i) absolute convergent
- (ii) conditional convergent
- (iii) Both (i) and (ii)
- (iv) None of the above
- (e) The function f(x) = |x| 1; $x \in \mathbb{R}$ is
 - (i) differentiable at x=0
 - (ii) not differentiable at x=0
 - (iii) continuous at x = 1
 - (iv) None of the above
- (f) To which of the following, Rolle's theorem can be applied?

(i)
$$f(x) = \tan x$$
 in $[0, \pi]$

(ii)
$$f(x) = \cos\left(\frac{1}{x}\right)$$
 in $[-1, 1]$

(iii)
$$f(x) = x^2$$
 in [2, 3]

(iv)
$$f(x) = x(x+3)e^{-x/2}$$
 in [-3, 0]

- The nth divided difference of a (9) polynomial of nth degree is
 - (i) always zero
 - (ii) always equal to n
 - (iii) always constant
 - (iv) not defined
- (h) Lagrange's formula is useful for
 - (i) interpolation
 - (ii) extrapolation
 - (iii) inverse interpolation
 - (iv) All of the above
- 2. Answer the following questions in brief:

2×8=16

- Define derived set with examples. (a)
- Define limit superior of a bounded (b) sequence.
- Define Raabe's test. (c)
- Write the statement of L' Hospital rule.
- Write the properties of a continuous (d) (e) function.
- State the Taylor's theorem with the remainder in Cauchy's form. (f)
- Under what situation is the Newton's method of backward difference of (g) interpolation applicable?
- Write the statement of Weddle's rule. (h)

3. Answer any two of the following questions:

Define a bounded set and bounded sequence. If $\{a_n\}$ is a bounded sequence such that $a_n > 0$ for all $n \in \mathbb{N}$, then show that

$$\underline{\lim} \left\{ \frac{1}{a_n} \right\} = \frac{1}{\overline{\lim} a_n}, \text{ if } \lim \overline{a_n} > 0 \qquad 2+5=7$$

- (b) State the axioms of an ordered field.
 Show that the set of real numbers forms a complete ordered field. 2+5=7
- (c) Define sequence and range of a sequence. Show that

$$\lim_{n \to \infty} \left[\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right] = 1$$

1+1+5=7

- 4. Answer any two of the following questions:
 - (a) Define infinite series with examples.
 Under what condition a geometric series is convergent? Show that the series

$$\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \cdots$$

is not convergent.

2+1+4=7

(b) Show that every absolutely convergent series is convergent. Test the convergence of the following series using Raabe's test:

3+4=7

$$\frac{\alpha}{\beta} + \frac{1+\alpha}{1+\beta} + \frac{(1+\alpha)(2+\alpha)}{(1+\beta)(2+\beta)} + \cdots$$

(c) State the Leibnitz's test for the convergence of alternating series. If the limit of

$$\frac{\sin 2x - a\sin x}{x^3}$$

as $x \to 0$ is finite, then find the value of a and the limit. 2+5=7

- 5. Answer any two of the following questions:
 - (a) Define uniform continuity of a function. Find the values of a and b, so that f(x) may be differentiable at x = 1, where

$$f(x) = \begin{cases} x^2 + 3x + a & \text{; if } x \le 1 \\ bx + 2 & \text{; if } x > 1 \end{cases}$$

(b) Give the statement of Rolle's theorem. Show that

$$\frac{v-\mu}{1+v^2} < \tan^{-1} v - \tan^{-1} \mu < \frac{v-\mu}{1+\mu^2}$$

if $0 < \mu < v$ and deduce that

$$\frac{\pi}{4} + \frac{3}{25} < \tan^{-1}\frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}$$
 2+5=7

- (c) State Cauchy's mean value theorem. Expand cos x in powers of x in infinite series using Maclaurin's series expansion. 2+5=7
- 6. Answer any two of the following questions:
 - (a) Define the operators Δ and E. Show that if h=1

$$\Delta^2 \log x = \log \left[1 - \frac{1}{(x+1)^2} \right]$$

Represent the function f(x) given by

$$f(x) = 2x^4 - 12x^3 + 24x^2 - 30x + 9$$

and its successive differences in factorial notation. 1+3+3=7

(b) What do you mean by interpolation? When would you recommend the formula involving divided differences? Find the third divided difference with arguments 2, 4, 9, 10 of the function

$$f(x) = x^3 - 2x 2 + 2 + 3 = 7$$

(c) What do you mean by numerical integration? Solve

$$u_{x+1} - au_x^{\cdot} = 0$$
; $a \neq 1$

Evaluate $\sqrt{12}$ by applying Newton's formula. 2+2+3=7