6 SEM TDC DSE MTH (CBCS) 3 (H)

2024

(May)

MATHEMATICS

(Discipline Specific Elective)

(For Honours)

Paper: DSE-3

(Discrete Mathematics)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. (a) Define order on a set. Give an example of an ordered set. 1+1=2
 - (b) Let P and Q be finite ordered sets and let $\psi: P \to Q$ be a bijective map. Then show that the following are equivalent:
 - (i) ψ is an order-isomorphism
 - (ii) x < y in P iff $\psi(x) < \psi(y)$ in Q
 - (iii) $x \longrightarrow y$ in P iff $\psi(x) \longrightarrow \psi(y)$ in Q

3

(c)	In which	of	the following	cases	is	the
	map $\phi: P \to Q$ order-preserving?					

(i) $P = Q = \langle \mathbb{Z}; \leq \rangle$, and $\phi(x) = x + 1$

(ii) $P = \langle \rho(S); \subseteq \rangle$ with |S| > 1, Q = 2 and $\phi(U) = 1$ if $U \neq \{\}$ and $\phi(\{\}) = 0$

Or

Prove that, for all ordered sets P, Q and R $\langle P \rightarrow \langle Q \rightarrow R \rangle \rangle \cong \langle P \times Q \rightarrow R \rangle$

- 2. (a) Let P be a lattice. Then for all $a, b, c, d \in P$, show that—
 - (i) $a \le b \Rightarrow a \lor c \le b \lor c$ and $a \land c \le b \land c$
 - (ii) $a \le b$ and $c \le d \Rightarrow a \lor c \le b \lor d$

(b) Let L and K be lattices and $f: L \to K$ a map. Then show that the following are equivalent:

- (i) f is order-preserving
 - (ii) $(\forall a, b \in L)$ $f(a \lor b) \ge f(a) \lor f(b)$
 - (iii) $(\forall a, b \in L)$ $f(a \land b) \leq f(a) \land f(b)$
- (c) Let P be a non-empty ordered set. Then prove that P is a complete lattice iff $\wedge S$ exists in P for every subset S of P. 3

24P/915

5

2

5

(d) Show that the ordered subset $Q = \{1, 2, 4, 5, 6, 12, 20, 30, 60\}$ of $\langle \mathbb{N}_0; \leq \rangle$

is not a lattice. Draw a diagram of Q and find the elements a, b, c, $d \in Q$ such that $a \lor b$ and $c \land d$ do not exist in Q.

Or

Give an example of an ordered set P in which there are three elements x, y, z such that—

- (i) $\{x, y, z\}$ is an antichain
- (ii) $x \lor y$, $y \lor z$ and $z \lor x$ fail to exist
- (iii) $\vee \{x, y, z\}$ exists
- 3. (a) Let L be a lattice. Prove that L is a chain iff every non-empty subset of L is a sublattice.
 - (b) Let $f: L \to K$ be a lattice homomorphism.
 - (i) Show that if $M \in \text{sub } L$, then $f(M) \in \text{sub } K$.
 - (ii) Show that if $N \in \text{sub } K$, then $f^{-1}(N) \in \text{sub}_0 L$. 2+2=4

24P/915

(Turn Over)

5

2

Let L be a lattice. Prove that—

(i) L is non-modular iff $N_5 \rightarrow L$

(ii) L is non-distributive iff $N_5 \rightarrow L$ or $M_3 \rightarrow L$, where

3+3=6

(d) Determine the lattices L and K to within isomorphism given that-

A SE SE SE

(i) L is non-distributive

(ii) K has at least 3 elements

(iii)
$$|L \times K| = 18$$

4. Answer any two of the following questions:

If every mon-empty subset of L is a

 $5 \times 2 = 10$

Let L be a distributive lattice and let (a) $a, b, c \in L$. Prove that

 $(a \lor b = c \lor b)$ and $a \land b = c \land b) \Rightarrow a = c$

Show that the following hold in all (b) Boolean algebras

(i)
$$(a \wedge b) \vee (a' \wedge b) \vee (a \wedge b') \vee (a' \wedge b') = 1$$

(ii)
$$a = b \Leftrightarrow (a \wedge b') \vee (a' \wedge b) = 0$$

24P/915

(Continued)

- (c) Let $f: B \to C$, where B and C are Boolean algebras.
 - (i) Assume that f is a lattice homomorphism. Then show that the following are equivalent:
 - (1) f(a) = 0 and f(1) = 1
 - (2) $f(a') = (f(a))' \forall a \in B$
 - (ii) If f preserves "', then show that f preserves \vee iff f preserves \wedge .
- 5. (a) Define a bipartite graph. Find the maximum number of edges of a complete bipartite graph with 6 vertices.

1+2=3

- (b) Answer any three of the following questions: $3\times3=9$
 - (i) Show that the number of odd degree vertices in a graph is always even.
 - (ii) Find a connected graph whose adjacency matrix is singular.
 - (iii) Define isomorphism of graphs. Give an example.
 - (iv) If G is a simple graph with at least two vertices, then prove that G must contain two or more vertices of the same degree.

6. Answer any three of the following questions:

6×3=18

- Prove that a connected graph G is (a) Eulerian iff the degree of each vertex of G is even.
- Which of the following graphs are (b) Hamiltonian?
 - (i) The complete graph, K₅
 - (ii) The complete bipartite graph, $K_{2,3}$
 - (iii) The wheel W_6
- Find a shortest path from A to G in the following weighted graph:

(d) Write short note a on travelling salesman problem.

The sentence of their power