6 SEM TDC MTMH (CBCS) C 13

2024

(May)

MATHEMATICS

(Core)

Paper: C-13

(Metric Spaces and Complex Analysis)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

1.	(a)	Write the triangle inequality of metric space.	1
	(b)	A metric d on a non-empty set may be negative. State True or False.	1
	(c)	A metric space consists of two objects. Write that objects.	2
	(d)	Define a pseudometric on a non-empty set.	2
	(e)	Define a complete metric space.	2

(f)	Answer any <i>two</i> from the following : $6\times 2=$	10
	(i) Show that in any metric space X, each open sphere is an open set.	12
	(ii) Let X be a metric space with metric d . Show that d_1 defined by	
	$d_1 = \frac{d(x, y)}{1 + d(x, y)}$	
	is also a metric on X.	
	(iii) Show that a Cauchy sequence is convergent if and only if it has a convergent subsequence.	
	(iv) Show that a subset of a metric space is bounded if and only if it is non-empty and is contained in some closed sphere.	
(a)	Write when a metric space is called sequentially compact.	1
(b)	Write an example of an uniformly continuous function in a metric space.	1
(c)	Define a continuous mapping in a metric space.	2
(d)	Show that the homeomorphism on the set of all metric spaces is an equivalence relation.	5
	Or	
	Let f is a continuous mapping of a metric space X into a metric space Y . Then show that if E is a connected subset of X , then $f(E)$ is	

subset of X, then f(E) is connected.

24P/888

2.

(Continued)

	(e)	Let X and Y be metric spaces and f a mapping of X into Y . Then show that f is continuous at x_0 if and only if $x_n \to x_0 \Rightarrow f(x_n) \to f(x_0)$. Or	6
		Show that every compact metric space has the Bolzano-Weierstrass property.	
3.	(a)	Define extended complex plane.	1
	(b)	If a function f is continuous throughout a region R , then it is not bounded. State True or False.	1
	(c)	Show that $\lim_{z\to 0} \frac{z}{\overline{z}}$ does not exist.	2
	(d)	Find the arg z, where $z = \frac{-5}{1 + i\sqrt{2}}$.	2
	(e)	Show that $\frac{dw}{dz} = (\cos\theta - i\sin\theta)\frac{\partial w}{\partial r}$,	
		$w = w(r, \theta)$ is an analytic function.	.4
		Or	
		Let $f(z) = z - \overline{z}$. Show that $f'(z)$ does not exist at any point.	
	(f)	Describe the mapping $w = z^2$.	5
4.	(a)	Find the analytic function $f(z) = u + iv$, where $u(x, y) = \sinh x \sin y$.	5
	(b)	ez may have negative value. State True	

1

(Turn Over)

or False.

24P**/888**

	(c)	Show that $\log (e^z) = z + 2n\pi i$, $n = 0, 1, 2, \dots$	4
		0-	
		Evaluate $\int_{C} \overline{z} dz$, where C is the right-	
		hand half of the circle $ z =2$.	
5.	(a)	If a series of complex numbers converges, then write to which the <i>n</i> th term converges as <i>n</i> tends to infinity.	1
	(b)	1	
	(-)	$z_n = \frac{1}{n^3} + i$, $n = 1, 2, \cdots$ converges.	2
	(c)	State and prove Liouville's theorem.	7
		Or	
		Find the Taylor's series for the function	
		$\frac{1}{(1+z^2)(z+2)}$, when $ z <1$.	
		$(1+z^2)(z+2)$	
6.	. (a)	Define absolute convergence of a power series.	2
	(b)	Define the circle of convergence of a power series.	2
	(c)	Write when a power series is called uniformly convergent.	1
	(d)		
		$f(z) = \frac{4z+3}{z(z-3)(z+2)}$	
		when $2 < z < 3$.	5
		+++	