Total No. of Printed Pages—5 6 SEM TDC DSE PHY (CBCS) 1 (H)

2024

(May)

PHYSICS

(Discipline Specific Elective)

(For Honours)

Paper: DSE-1

(Nuclear and Particle Physics)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct option from the following:

 1×5=5
 - (a) The radii of two nuclei with mass numbers 1 and 8 are in the ratio

(i) 1:8

(ii) 8:1

(iii) 1:2

(iv) 2:1

(b)	The average binding energy of a nucleus
	is of the order of

- (i) 8 eV
- (ii) 8 keV
- (iii) 8 MeV
- (iv) None of the above
- (c) On emitting an α -particle and a β -particle, the mass number and atomic number of a nucleus $_n X^m$ change to
 - (i) m-4, n
 - (ii) m-4, n-1
 - (iii) m-3, n+1
 - (iv) m-3, n-1

(d) A kaon is a ____ and a proton is a

- (i) fermion, boson
- (ii) fermion, fermion
- (iii) boson, fermion
- (iv) boson, boson

(e) Isospins for a proton and a neutron are

- (i) $\frac{1}{2}$ and $-\frac{1}{2}$ respectively
- (ii) $-\frac{1}{2}$ and $\frac{1}{2}$ respectively
- (iii) both $\frac{1}{2}$
- (iv) None of the above

2.	(a)	What is separation energy of a nucleon?	2
	(b)	Derive an expression for nuclear magnetic dipole moment.	3
3.	(a)	What are 'independent particle model' and 'strong interaction model' in connection with a nucleus?	2
	(b)	Discuss the evidences of a shell structure in a nucleus. Give a brief description of the shell model. 3+3	=6
	(c)	Write down the Bethe-Weizsacker semi-empirical mass formula. Describe briefly the significance of each term of the formula.	=5
4.	(a)	Compare the energy spectra of alpha and beta rays. Or	4
		Give a qualitative description of the Gamow's theory of alpha decay. What is Gamow factor?	=4
	(b)	Why is gamma ray assumed to be emitted from inside the nucleus?	2
	(c)	Explain the term 'internal conversion' in connection with gamma radiation.	3

5.	(a)	What are the conservation laws to be followed by a nuclear reaction?	3
	(b)	What is nuclear cross-section? Derive an expression for nuclear cross-section.	

- (c) What are resonance reactions?
- 6. Write short notes on any two of the following:

 4×2=8
 - (a) Bethe-Bloch formula

What is its unit?

- (b) Gamma ray interaction through matter
- (c) Compton effect
- 7. Describe the construction and working of a GM counter. What are dead time and recovery time? What is quenching? How is it achieved?

 4+2+1+2=9

Or

What is a semiconductor detector? Name a few types of semiconductor detector. What are its advantages over a gas-filled detector? Describe any one type of semiconductor detector.

1+2+2+4=9

8. Give a brief description of the working of a linear accelerator. Derive a relation between frequency of the applied a.c. voltage and the length of a conducting cylinder.
3+2=5

(Continued)-

1+3+1=5

- 9. (a) Classify elementary particles on the basis of standard model.
 - (b) Describe briefly the term 'strange particles'. What is strangeness quantum number S? What are the values of S for omega and lambda particles? 2+1+2=5
 - (c) What is CPT invariance?
 - (d) Check whether Baryon number and strangeness are conserved in the following reactions: 2×3=6

(i)
$$\pi^+ + n \rightarrow \Lambda^0 + K^+$$

(ii)
$$\pi^+ + n \to K^0 + K^+$$

(iii)
$$\pi^+ + n \rightarrow \pi^- + p$$

Or

Describe the conservation laws to be followed specifically in a strong interaction. In which interaction is parity violated?

5+1=6

