5 SEM TDC DSE MTH (CBCS) 1.1/1.2/1.3 (H)

2024

(November)

MATHEMATICS

(Discipline Specific Elective)

(For Honours)

Paper: DSE-1

Full Marks: 80

Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

Paper: DSE-1.1

(ANALYTICAL GEOMETRY)

- 1. Answer the following questions:
 - (a) Write the vertex of the conic $(y-2)^2 = 2(x+2)$.
 - (b) Write the processes to sketch the ellipse.

	(c)	Find the focus, vertex, equation of directrix and length of the latus rectum of the conic $x = y^2 - 4y + 2$.	4
	(d)	Describe the graph of the curve $3(x-2)^2 + 4(y+1)^2 = 12$. Also find its centre and foci.	6
		Or	
		Describe the graph of the hyperbola $x^2 - y^2 - 4x + 8y - 21 = 0$ and sketch its graph.	
2.	Ans	swer the following questions :	
	(a)	Write the equation of the tangent to the parabola $x^2 = 4ay$ at the point (x_1, y_1) .	1
	(b)	Write True or False :	1
		An ellipse is the set of all points in the plane that are equidistant from a fixed line and a fixed point not on the line.	
	(c)	Suppose that an ellipse has semi-major axis a , semi-minor axis b and foci $(\pm c, 0)$. Then write the expression c in terms of a and b .	1
	(d)	Find the equation of the parabola that has its vertex at (1, 2) and focus at (4, 2). Also state the reflection property of the parabola.	6
P25/	191	(Continued	1 1

(Continued)

(e) Find the equation of the ellipse with foci (0, ±2) and major axis with endpoints (0, ±4) and also sketch it.

Or

Find the equation and sketch the curve of the hyperbola whose foci (-3, -3) and (3, 3).

- 3. Answer the following questions:
 - (a) Write the condition that the quadratic equation

 $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ represents ellipse.

- (b) Find the new coordinates of the point (2, 4) if the coordinate axes are rotated through an angle $\theta = \pi/6$.
- (c) Consider the equation $x^2 xy + y^2 6 = 0$. Rotate the coordinate axes to remove the *xy*-term. Then identify the type of conic represented by the equation and sketch its graph.
- (d) Let an x'y'-coordinate system be obtained by rotating an xy-coordinate system through an angle $\theta = 30^{\circ}$.
 - (i) Find the x'y'-coordinate of the point whose xy-coordinates are (2, 4).

P25/191

(Turn Over)

6

1

2

(ii) Find an equation of the curve $2x^2 + 2\sqrt{3}xy = 3$ in x'y'-coordinates.

Or

Identify and sketch the curve

$$14x^2 - 4xy + 11y^2 - 44x - 58y + 71 = 0$$

- 4. Answer the following questions:
 - (a) Write the equation of the sphere whose end-points of the diameter is given.
 - (b) Write the standard equation of hyperbola of one sheet.
 - (c) Write True or False:

 Curve of intersection of two spheres is a sphere.
 - (d) Write the centre and radius of the sphere

$$x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$$
 2

- (e) Find the equation of the sphere whose centre is (2, -3, 4) and radius is 6 units.
- (f) Find the equation of the sphere which passes through the points (1, -3, 4), (1, -5, 2), (1, -3, 0) and whose centre lies on the line x + y + z = 0.

P25/191

6

1

1

Or

Find the equation of the sphere of centre at (1, 2, 3) and touching a plane at (2, 1, 3).

- 5. Answer the following questions:
 - (a) Find the radius and centre of the circle $x^2 + y^2 + z^2 x y z 1 = 0$, x + y + z = 0 5
 - (b) Find the equation of the sphere for which the circle

$$x^2 + y^2 + z^2 + 10y - 4z - 8 = 0$$
, $x + y + z = 3$ is a great circle.

Or

Find the equations of the spheres which pass through the

- $x^{2} + y^{2} + z^{2} 2x + 2y + 4z 3 = 0$; 2x + y + z 4 = 0and touch the plane 3x + 4y - 14 = 0.
- 6. Answer the following questions:
 - (a) Show that the plane 2x + y z = 12 touches the sphere $x^2 + y^2 + z^2 = 24$ and find its point of contact.
 - (b) Classify and sketch the surface $9x^2 + 4y^2 + z^2 = 36$.

Classify and sketch the surface $z = x^2 + 4y^2$.

Paper: DSE-1.2

(PORTFOLIO OPTIMIZATION)

1.	Answer any six of the following questions: $1 \times 6 = 6$				
	(a)	What is mutual fund?			
	(b)	Define diversification.			
	(c)	Write one advantage of Sharpe performance model.			
	(d)	What is market timing?			
	(e)	What is beta of a portfolio?			
	(f) Define risk-free asset.				
	(g)	What is the value of correlation between risky asset and risk-free asset?			
2.	Ansv	wer any six of the following questions: $4 \times 6 = 24$			
	(a)	Write a short note on investment objective and investment constraints. 4			
	(b)	What are the different components of systematic risk? 4			
	(c)	How would you differentiate risk from uncertainty?			
	(d)	What is the difference between historical and expected returns? Write two measures of mean historical returns. 3+1=4			

returns.

(7)

- (e) If an investment that costs ₹ 400 and is worth ₹ 500 after being held for two years, find annual holding period return (annual HPR) and annual holding period yield (annual HPY). 2+2=4
- (f) Discuss four different types of risk of an investment.
- (g) Calculate the expected rate of return and the risk in terms of variance of the following economic scenarios: 2+2=4

Economic Conditions	Probability	Rate of Return
Strong economy	0.25	0.20
Weak economy	0.25	-0.20
No major change in economy	0.50	0.10

- 3. (a) How can risk of an asset be calculated? 2
 - (b) State one-fund theorem. 2
 - (c) What do you mean by efficient frontier? 2
- **4.** Answer any *two* of the following questions: $6 \times 2 = 12$
 - (a) Write the assumptions of capital market theory. Explain briefly.
 - (b) Discuss some of the disadvantages of Markowitz model.
 - (c) In what way two-factor model is better than one-factor model? Justify.

5. Describe variance and standard variation of returns for a portfolio of investments.

Or

7

Find the covariance of rates of returns of US stocks and US bonds as given below:

2020	US Stock Index (R _i)	US Bond Index (R_j)
January	-3.60	1.58
February	3.10	0.40
March	6.03	-0.85
April	1.58	1.05
May	-7.99	1.71
June	-5.24	1.87
July	7.01	0.68
August	-4.51	2.01
September	8.92	0.02
October	3.81	-0.16
November	0.01	0-70
December	6.68	-1.80

If standard deviations of both scenarios are $\sigma_i = 5.56$ and $\sigma_j = 1.22$, then find the correlation.

6. Write the formula for beta of a portfolio.

Interpret beta of 1.20 and 0.70. 1+2=3

- 7. Answer any three of the following questions: 5×3=15
 - (a) Distinguish between capital market line (CML) and security market line (SML).
 - (b) State the limitations of Jensen's performance index model.
 - (c) Discuss the assumptions of capital asset pricing model (CAPM).
 - (d) Discuss the effects of combining securities in portfolio.
- 8. Describe Treynor portfolio performance measure with example.

Or

Consider the following information on three mutual funds P, Q and R, and the market index:

muca .	Mean Return	SD	Beta	
P	15%	20%	0.90	
Q	17%	24%	1.10	
R	19%	27%	1.20	
Market Index	16%	20%	1.00	

The mean risk-free rate is 10%. Calculate the Treynor's measure and Sharpe measure for the three mutual funds.

4+3=7

Paper: DSE-1.3

(FINANCIAL MATHEMATICS)

- 1. (a) Write the inverse supply function of the function 30q + 5p = 80.
 - (b) Write the revenue, if p is the price and q is the number of quantities sold. 1
 - (c) For demand and supply functions, the equilibrium set will always a singleton set. State true or false.
 - (d) After introduction of excise tax, among the supply and demand functions, write which function remains same.
 - (e) Write two reasons for introducing excise tax. 2
 - (f) Find the solution of the recurrence equation $5y_t = 3y_{t-1} + 6$, given $y_0 = 4$.

Or

Show that the present value of an annuity I for N years, given the fixed interest rate r is

$$P = \frac{I}{1+r} + \frac{I}{(1+r)^2} + \frac{I}{(1+r)^3} + \dots + \frac{I}{(1+r)^N}$$

1

(11)

2. Answer any two of the following: $4 \times 2 = 8$

	(a)	Describe cobweb model.	
	(b)	Describe general linear case.	
	(c)	Determine whether cobweb model predicts stable or unstable equilibrium for the market with supply and demand functions $2p-3q=12$ and $2p+q=20$ respectively.	
3.	(a)	Define fixed cost.	
	(b)	Write one difference between maximum point and a point of inflection.	
	(c)	Find the critical points of the function $f(x) = x^3 - 12x^2 + 21x + 12.$	2
	(d)	Find the extreme values of the function $f(x) = x^4 - 8x^3 + 16x^2 - 7$ in the interval [1, 4].	•
4.	(a)	Write when demand is elastic.	
	(b)	If $C(q) = 100 + 20q - 2q^2 + 6q^3$ be the cost function, then find the fixed cost. 2	
	(c)	Define break-even point and variable cost. 2+2=4	
P25/	191	(Turn Over)	1

(d) Show that at the startup point, marginal cost is equal to average variable cost.

Or

Find the elasticity of demand for the demand function

$$D = \{(q, p) : q(1+p^2) = 50\}$$

Also find the values of p when the demand is elastic and inelastic.

5. (a) Let

$$f(x, y) = x^3y^2 + x^2y$$

Find

$$\frac{\partial f}{\partial x}$$

- (b) Let p_1 and p_2 are the selling prices of two items X and Y. Write the revenue of producing q_1 units of X and q_2 units of Y.
- (c) Find the critical point(s) of the profit function

$$I(x, y) = 5x + 24y - 1 \cdot 5x^2 - 2y^2 + xy - 5$$
 3

(d) Classify the critical points of the function $f(x, y) = y^3 + 3xy - x^3$ and find the extreme values.

(Continued)

5

Or

A firm produces two goods A and B, with demand functions $x = 12 - p^A$, $y = 18 - p^B$. Firm's cost function is $c(x, y) = x^2 + y^2 + 2xy$. Find the maximum achievable profit.

- 6. (a) Define portfolio.
 - (b) Write when a portfolio is called an arbitrage portfolio.
 - (c) Answer any two questions from the following: 5×2=10
 - (i) Describe technology matrix.
 - (ii) Let

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \text{ and } A^n = \begin{bmatrix} a_n & b_n \\ c_n & d_n \end{bmatrix}$$

 $n \ge 2$. Find recurrence equations for a_n , b_n , c_n , d_n .

(iii) For input-output model with two industries, the coefficient matrix is

$$A = \begin{bmatrix} 0 \cdot 3 & 0 \cdot 1 \\ 0 \cdot 2 & 0 \cdot 4 \end{bmatrix}$$

Determine the production schedule x in terms of external demand d.

7.	(a)	Cash flow may be negative. State true or	
		false.	1
	(b)	Write any one form of hedging.	1
	(c)	Interest may be called by an another name. Write that name.	1
	(d)	Write the meaning of the cash flow stream (-100, 200).	1
	(e)	Write the risk aversion principle.	2
8.	(a)	Write under what type of interest, capital exhibits geometric growth.	1
	(b)	If r is the 1-year interest rate, then write 1-year discount factor.	1
	(c)	Define effective interest rate.	2
	(d)	Find the internal rate of return of the cash flow (-1, 1, 0, 1).	5
		Or	
		Describe Macaulay duration.	
((e)	Explain callable bonds.	2
P25/1	91	(Continue	d j

(f) Find the future value of the cash flow stream (-20, 10, 10, 10) when the periods are years and the interest rate is 10%.

3

* * *