5 SEM TDC MTMH (CBCS) C 11

2024

(November)

MATHEMATICS

(Core)

Paper: C-11

(Multivariate Calculus)

Full Marks: 80

Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. (a) State the range of

$$f(x, y) = \frac{1}{xy}$$

(b) Fill in the blank:

The definition of limit of f(x, y) applies to the boundary points and ____ of the domain of f.

(c) State when

$$\lim_{(x, y)\to(x_0, y_0)} f(x, y)$$

does not exist.

1

(d) Investigate the existence of the limit

$$\lim_{(x, y)\to(0, 0)} \frac{x^2 + y}{y}$$

- (e) Find f_x and f_y , given $f(x, y) = \log_y x$. 2
- (f) Use chain rule to find $\frac{dw}{dt}$ where $w = x^2 + y^2$ along the path $x = \cos t$ and $y = \sin t$ at $t = \pi$.

(g) If w=f(x, y) is differentiable and both x and y are differentiable of t, then show that w is a differentiable function of t and

$$\frac{dw}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

Or

If w = yz + zx + xy and x = r + s, y = r - s, z = rs, then find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ at (r, s) = (2, 1).

- (h) Determine ∇f at (1, 2, -2) where $f(x, y, z) = (x^2 + y^2 + z^2)^{-\frac{1}{2}} + \log xyz$
- (i) Find the directional derivative of

 $f(x, y, z) = 3e^x \cos yz$

at the origin in the direction of

$$2\hat{i} + \hat{j} - 2\hat{k}$$

Or

Find the tangent plane and normal to the surface x+y+z=1 at (0, 1, 0).

(j) Find the local extrema or saddle point as applicable of the function

$$f(x, y) = 6x^2 - 2x^3 + 3y^2 + 6xy$$
 5

(k) Use the method of Lagrange's multiplier to maximise f(x, y) = xy subject to the constraint x + y = 16.

Or

Find the points on the surface $z^2 = xy + 4$ closest to the origin.

2. (a) Find the y-limits of integration for the integral

$$\iint_{R} f(x, y) dA$$

where R is the region bounded by the line x + y = 1 and a circle of radius 1 with its centre at the origin.

(b) Sketch the region of integration on the plain paper for the integral

$$\int_0^3 \int_0^2 f(x, y) dx dy$$
 1

(c) Write any one iterated integral for the double integral

$$\iint_R f(x, y) dA$$

where R is the triangular region with the vertices (0, 0), (1, 0) and (0, 1).

(d) Reverse the order of integration

$$\int_0^1 \int_2^{4-2x} dy dx$$
 2

(e) Find the volume of the region between the cylinder $z=y^2$ and xy-plane bounded by the planes x=0, x=1, y=-1, y=1.

P25/171

1

2

(f) Set up the iterated integral for evaluating the integral

$$\iiint_D f(r,\,\theta,\,z)\,dz\,rdrd\theta$$

over the region D which is a prism with its base on the xy-plane bounded by the x-axis and the lines y=x and x=1 and whose top lies in the plane z=2-y.

(g) Write any two different iterated triple integrals for determining the volume of the tetrahedron bounded by the coordinate planes and the plane

$$x + \frac{y}{2} + \frac{z}{3} = 1$$
 $2\frac{1}{2} + 2\frac{1}{2} = 5$

3. (a) Define Jacobian of the transformation

$$x = f(u, v); y = g(u, v)$$
 1

(b) If $u = \frac{1}{2}(x+1), v = \frac{1}{3}(y+4); w = 2z+4$

find
$$\frac{\partial(x, y, z)}{\partial(u, v, w)}$$
.

P25/171

(Turn Over)

(c) Evaluate $\int_C (xy+y+z)ds$ along the curve

$$\overline{r}(t) = 2t\hat{i} + t\hat{j} + (2 - 2t)\hat{k}; \ 0 \le t \le 1$$
 3

- (d) Show that the work done $\int \overline{F} \cdot d\overline{r}$ around every closed loop in an open region D is zero if and only if \overline{F} is conservative in D.
- (e) State the fundamental theorem on line integrals. If \overline{F} is a vector field whose components are continuous throughout an open connected region D in space, then there exists a differentiable function f(x, y, z) such that $\overline{F} = \nabla f$, show that

$$\int_A^B \overline{F} \cdot d\overline{r}$$

is path independent where

 $\overline{r} = g(t)\hat{i} + h(t)\hat{j} + k(t)\hat{k}; \ a \le t \le b$ is a smooth curve joining A and B in D. 1+3=4

4. (a) Find the curl of the function

$$\bar{F}(x, y) = (x^2 - y)\hat{i} + (xy - y^2)\hat{j}$$
 1

(b) State Green's theorem in circulationcurl or tangential form.

P25/171

(Continued)

2

- (c) Integrate f(x, y, z) = x + y + z over the surface of the cube cut from the first octant by the planes x = a; y = a; z = a.
- (d) Evaluate $\iint_S f d\sigma$ where S is the surface area of the cone $z = \sqrt{x^2 + y^2}$; $0 \le z \le 1$ and $f(x, y, z) = x^2$.
- (e) State and prove Stokes' theorem. 5

 Or

 State and prove divergence theorem.

* * *