5 SEM TDC MTMH (CBCS) C 12

2024

(November)

MATHEMATICS

(Core)

Paper: C-12

(Group Theory—II)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. (a) State True or False:

 Every isomorphism is an automorphism.
 - (b) Show that a normal subgroup of a group G may not be a characteristic subgroup of G.
 - (c) Let $f: G \rightarrow G$ be a homomorphism. Suppose f commutes with every inner automorphism of G. Show that

$$K = \{x \in G \mid f^2(x) = f(x)\}$$

is a normal subgroup of G.

3

2

(d) If $f: G \to G$ such that $f(x) = x^n$ is an automorphism, where n is some fixed integer, then show that

$$a^{n-1} \in Z(G)$$

for all $a \in G$.

(e) Let G be a group. Show that the mapping $\phi: G \to G$ such that

$$\phi(x) = x^{-1} \ \forall \ x \in G$$

is an automorphism if and only if G is abelian.

4

3

(f) Show that the set I(G) of all inner automorphisms of G is a subgroup of aut G.

5

- **2.** Answer any *two* of the following: $6 \times 2 = 12$
 - (a) For every positive integer n, prove that aut (Z_n) is isomorphic to U(n).
 - (b) Let G' be the commutator subgroup of a group G. Then show that—
 - (i) G' is normal in G;
 - (ii) $\frac{G}{G'}$ is abelian.
 - (c) If N is a normal subgroup of a group G and G' be the commutator subgroup of G and $N \cap G' = \{e\}$, then show that

 $N \subseteq Z(G)$

		product of U groups in three different ways.	
	(b)	Find the number of elements of order 5	3
		25 \ Z ₅ .	3
	(c)	Let $G = \langle a \rangle$ be an abelian group of order 6. Let	
		$H = \{e, a^2, a^4\}, K = \{e, a^3\}$	
		Then prove that H and K are normal subgroups of G .	4
	(d)	Let G and H be finite cyclic groups. Prove that $G \oplus H$ is cyclic if and only if $ G $ and $ H $ are relatively prime.	_
		Or	5
		Let G be a group and suppose G is IDP	
		of H_1, H_2, \dots, H_n . Let T be EDP of	
		H_1, H_2, \dots, H_n . Then show that G and T are isomorphic.	
	(e)	Show that every group of order p^2 ,	
		where p is a prime, is either cyclic or	
		isomorphic to direct product of two cyclic groups, each of order p.	5
		Or	Ŭ
		Prove that a group G is internal direct product of its subgroups H and K if and only if (i) H and K are normal subgroups of G and (ii) $H \cap K = \{e\}$.	
4.	(a)		1
	(a) (b)	Define Sylow p-subgroup. What is a simple group? Give one	1
	(0)	example of a simple group. 1+1=	=2

P25/172

(Turn Over)

(c)	If a be an element of a group G , then show that $Cl(a) = \{a\}$ if and only	
	if $a \in Z(G)$.	3
(d)	Prove that a group of order p^2 is abelian.	4
(e)	Let G be a finite group whose order is a prime p . Then show that $Z(G)$ has more than one element. Or	4
	Let G be a finite group and p a prime that divides the order of G . Then show that G has an element of order p .	
<i>(f)</i>	Let G be a finite group and $a \in G$. Then prove that	
	$O(Cl(a)) = \frac{O(G)}{O(N(a))}$	
	where Cl(a) is the conjugate class of a.	5
(g)	Prove that a group of order 15 is abelian. Or	5
	Prove that no group of order 30 is simple.	
(h)	If H is a subgroup of a finite group G and $ H $ is a power of a prime p , then prove that H is contained in some p -subgroup of G . Or	6
	Show that the number of Sylow p -subgroups of a group G is equal to 1 modulo p and divides $ G $. Also show that any two Sylow p -subgroups of G are conjugate.	