5 SEM TDC PHYH (CBCS) C 12

2024

(November)

PHYSICS

(Core)

Paper: C-12

(Solid-State Physics)

Full Marks: 53

Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct option from the following: $1 \times 5 = 5$
 - (a) Repeatable entity of a crystal structure is known as
 - (i) crystal
 - (ii) lattice
 - (iii) unit cell
 - (iv) Miller indices

(b) For solids, the optical and acoustic branches coincide and forbidden band vanishes at

$$k=\pm\frac{\pi}{2a}$$

when (mass of light and heavy atoms are m and M respectively)

- (i) m < M
- (ii) m > M
- (iii) m = M
- (iv) mM = 1
- (c) The paramagnetic susceptibility varies as
 - (i) T
 - (ii) T²
 - (iii) $\frac{1}{T}$
 - (iv) $\frac{1}{T^2}$
- (d) Ionic polarizability
 - (i) increases with T
 - (ii) decreases with T
 - (iii) is independent of T
 - (iv) None of the above

- (e) Hall effect can be used to measure the
 - (i) charge carrier density only
 - (ii) type of semiconductor only
 - (iii) mobility of charge carrier only
 - (iv) All of the above
- 2. Answer any five from the following: 2×5=10
 - (a) Define reciprocal lattice. State the mathematical relation of this lattice with direct lattice.
 - (b) Define geometrical structure factor. How is it related to atomic scattering factor?
 - (c) Explain ferrimagnetism. What are ferrites?
 - (d) What are optical absorption and infrared absorption in a dielectric?
 - (e) What is piezoelectricity? Give an example of a crystal that is piezoelectric but not ferroelectric.
 - (f) Define mobility of charge carrier and write its unit.
- 3. (a) Find the Miller indices of a plane having intercepts of 8a, 4b and 2c on the a-, b- and c- axes, respectively.

	(b)	Give its significance. 1+1=	=2
4.	(a)	Derive the vibrational modes of a diatomic lattice. Name the different branches of the dispersion relation 4+2=	=6
	(b)	State Dulong and Petit law of specific heat of solid.	2
5.	TT71-	tain an expression for diamagnetic ceptibility using the Langevin's theory. at is the significance of negative ceptibility?	=6
		Or	
	nara	e an account of quantum theory of amagnetism and derive an expression for ceptibility.	6
6.	(a)	Obtain an expression for dipolar polarizability at moderate temperature.	4
	(b)	Classify different groups of ferroelectric materials on the basis of symmetry. Also give one example of each group.	4
7.	(a)	Discuss the formation of allowed and forbidden energy bands on the basis of the Kronig-Penney model.	4

P25/174

(Continued)

(b) A semiconducting crystal of 1.2 cm length, 5 mm width and 1 mm thick is placed in a magnetic field 0.5 Tesla perpendicularly to its flat surface. When a current of 20 mA flows through its sample along its length, a Hall voltage of 37 micro-Volt is developed across its width. Determine the Hall Coefficient of the specimen.

3

Or

What is an extrinsic semiconductor and how can they be achieved? Draw the energy band diagram of (a) n-type semiconductor and (b) p-type semiconductor. 2+1=3

- 8. (a) What is superconductivity? How do magnetic and electrical properties of superconductors differ from those of normal conductor? 1+2=3
 - (b) What do you mean by flux exclusion and what is Meissner effect?

Or

Define isotope effect in superconductor mentioning its importance.