5 SEM TDC DSE STS (CBCS) 1 (H/NH) (N/O)

2024

(November)

STATISTICS

(Discipline Specific Elective)

(For Honours/Non-Honours)

Paper: DSE-1

(Operations Research)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 55

Pass Marks: 22

Time: 3 hours

- 1. Choose the correct answer from the following alternatives: $1\times6=6$
 - (a) Operations research approach is
 - (i) multi-disciplinary
 - (ii) scientific
 - (iii) intuitive
 - (iv) All of the above

- (b) For a maximization problem, the objective function coefficient for an artificial variable is
 - (i) + M
 - (ii) M
 - (iii) zero
 - (iv) None of the above
- (c) The occurrence of degeneracy while solving a transportation problem means that
 - (i) total supply equals total demand
 - (ii) the solution so obtained is not feasible
 - (iii) the few allocations become negative
 - (iv) None of the above
- (d) The number of non-negative variables in a basic feasible solution to an $m \times n$ transportation problem is
 - (i) mn
 - (ii) m+n
 - (iii) m+n+1
 - (iv) m+n-1

- (e) The size of the pay off matrix of a game can be reduced by using the principle of
 - (i) game inversion
 - (ii) rotation reduction
 - (iii) dominance
 - (iv) game transpose
- (f) If orders are placed with size determined by the EOQ, then the re-order costs component is
 - (i) equal to the holding cost component
 - (ii) greater than the holding cost component
 - (iii) less than the holding cost component
 - (iv) either greater than or less than the holding cost component
- 2. Answer the following questions in brief: $2\times6=12$
 - (a) State the main characteristics of operations research.
 - (b) What are the limitations of linear programming problem?
 - (c) What do you mean by a non-degenerate basic feasible solution of a transportation problem?

- (d) Give the mathematical formulation of an assignment problem.
- (e) State the difference between pure strategy and mixed strategy.
- (f) What is set-up cost in inventory problem?
- 3. Answer any two questions from the following:
 - (a) What are the various phases of operations research problems? Discuss in brief the role of OR models in decision making.

 2+5=7
 - (b) Explain briefly the graphical method of solving the linear programming problems. State its advantages and limitations.
 5+2=7
 - (c) In the course of simplex table calculations, describe how you will detect a degenerate, an unbounded and a non-existing feasible solution. Obtain the dual of the following LPP:

 3+4=7

Minimize $Z = 2x_2 + 5x_3$ subject to

$$x_1 + x_2 \ge 2$$

$$2x_1 + x_2 + 6x_3 \le 6$$

$$x_1 - x_2 + 3x_3 = 4$$
and $x_1, x_2, x_3 \ge 0$

- 4. (a) (i) Give a mathematical formulation of a transportation problem. Prove that the transportation problem always possess a feasible solution. 2+4=6
 - (ii) Determine an initial basic feasible solution to the following transportation problem using the northwest corner rule, where O_i and D_j represent ith origin and jth destination respectively:

	D_1	D_2	D_3	D_4	Supply
O_1	6	4	1	5	14
02	8	9	2	7	16
03	4	3	6	2	5
	6	10	15	4	35

Or

(i) Explain what is meant (b) optimality test of a transportation problem.

> Describe the computational procedure of optimality test in a transportation problem. 2+4=6

5

(ii) Solve the minimal assignment problem whose effectiveness matrix is

	I	II	III	IV
A	2	3	4	5
B	4	5	6	7
C	7	8	9	8
D	3	5	8	4

5

5. (a) When is the competitive situation called a game? Explain maxi-min and minimax principle used in game theory. State the rules for detecting a saddle point.

2+3+2=7

Or

Planer R

(b) Solve the following 2 × 4 game graphically:

7

		1 lager B			
		B_1	B_2	B_3	B_4
Player A	A_1	2	1	0	-2
Player A	A ₂	1	0	3	2

6. (a) Describe the different norms used for controlling inventories classified by ABC analysis.

5

Or

(b) What is economic order quantity? Find the EOQ for the following data: 2+3=5
Annual usage = 1000 pieces
Cost per piece = ₹ 250
Expediting cost = ₹ 4 per order
Ordering cost = ₹ 6 per order
Inventory holding cost = 20% of average inventory
Material holding cost = ₹ 1 per piece

(Old Course)

Full Marks: 50
Pass Marks: 20

Time: 2 hours

- 1. Choose the correct answer from the following alternatives: $1 \times 5=5$
 - (a) Operations research approach is
 - (i) multi-disciplinary
 - (ii) scientific
 - (iii) intuitive
 - (iv) All of the above
 - (b) For a maximization problem, the objective function coefficient for an artificial variable is
 - (i) + M
 - (ii) M
 - (iii) zero
 - (iv) None of the above
 - (c) The number of non-negative variables in a basic feasible solution to an $m \times n$ transportation problem is
 - (i) mn
 - (ii) m+n
 - (iii) m+n+1
 - (iv) m+n-1

- (d) The size of the pay off matrix of a game can be reduced by using the principle of
 - (i) game inversion
 - (ii) rotation reduction
 - (iii) dominance
 - (iv) game transpose
- (e) If orders are placed with size determined by the EOQ, then the re-order costs component is
 - (i) equal to the holding cost component
 - (ii) greater than the holding cost component
 - (iii) less than the holding cost component
 - (iv) either greater than or less than the holding cost component
- 2. Answer the following questions in brief: $2 \times 5 = 10$
 - (a) State the main characteristics of operations research.
 - (b) What are the limitations of linear programming problem?
 - (c) What do you mean by a non-degenerate basic feasible solution of a transportation problem?
 - (d) State the difference between pure strategy and mixed strategy.
 - (e) What is set-up cost in inventory problem?

- 3. Answer any two questions from the following:
 - (a) What are the various phases of operations research problems? Discuss in brief the role of OR models in decision-making. 2+4=6
 - (b) Explain briefly the graphical method of solving the linear programming problems. State its advantages and limitations.

 4+2=6
 - (c) In the course of simplex table calculation, describe how you will detect a degenerate, an unbounded and a non-existing feasible solution. Obtain the dual of the following LPP:

 3+3=6

Minimize $Z = 2x_2 + 5x_3$ subject to

$$x_1 + x_2 \ge 2$$

$$2x_1 + x_2 + 6x_3 \le 6$$

$$x_1 - x_2 + 3x_3 = 4$$
and
$$x_1, x_2, x_3 \ge 0$$

4. (a) (i) Give a mathematical formulation of a transportation problem.

Prove that the transportation problem always possess a feasible solution.

2+4=6

(ii) Determine an initial basic feasible solution to the following transportation problem using the northwest corner rule, where O_i and D_j = represent ith origin and jth destination respectively.

	D_1	D_2	D_3	D_4	Supply
O_1	6	4	1	5	14
02	8	9	2	7	16
03	4	3	6	2	5
1.00	6	10	15	4	35

Or

(b) (i) Explain what is meant by optimality test of a transportation problem.

Describe the computational procedure of optimality test in a transportation problem. 2+4=6

(ii) Solve the minimal assignment problem whose effectiveness matrix is

	I	П	Ш	IV
A	2	3	4	5
В	4	5	6	7
C	7	8	9	8
D	3	5	8	4

5

5

5. (a) When is the competitive situation called a game? Explain maxi-min and minimax principle used in game theory. State the rules for detecting a saddle point.

2+3+2=7

Or

7

5

(b) Solve the following 2 × 4 game graphically:

Player B

 B_1 B_2 B_3 B_4 Player A A_1 2 1 0 -2 1 0 3 2

6. (a) Describe the different norms used for controlling inventories classified by ABC analysis.

Or

(b) What is economic order quantity? Find the EOQ for the following data: 2+3=5
 Annual usage = 1000 pieces
 Cost per piece = ₹ 250
 Expediting cost = ₹ 4 per order
 Ordering cost = ₹ 6 per order
 Inventory holding cost = 20% of

average inventory Material holding cost = ₹ 1 per piece

* * *

5 SEM TDC DSE STS (CBCS) 1 (H/NH) (N/O)