1 SEM TDC CHMH (CBCS) C 1

2024

(November)

CHEMISTRY

(Core)

Paper: C-1

(Inorganic Chemistry)

Full Marks: 53
Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following: $1\times 6=6$
 - (a) Heisenberg's uncertainty principle is

(i)
$$\Delta x \cdot \Delta p = \frac{h}{4\pi m}$$

(ii)
$$\Delta x \cdot \Delta p = \frac{h}{mv}$$

(iii)
$$\Delta x \cdot \Delta p \ge \frac{h}{4\pi}$$

(iv)
$$\Delta x \cdot \Delta p \le \frac{h}{4\pi}$$

- (b) The value of standard hydrogen electrode potential is
 - (i) 0.00 volt
 - (ii) 1.00 volt
 - (iii) 0.10 volt
 - (iv) 1.10 volt
- (c) Which of the following has the highest lattice energy?
 - (i) BeO
 - (ii) MgO
 - (iii) CaO
 - (iv) SrO
- (d) The increasing order of electron gain enthalpy among halogens is
 - (i) I < Br < Cl < F
 - (ii) I < Br < F < Cl
 - (iii) Br < I < Cl < F
 - (iv) Br < I < F < Cl

	110
(e)	The geometrical shape of SF ₄ molecule
	is the second of with the second of
	(i) pyramidal
	(ii) T-shaped
	(iii) seesaw
	(iv) tetrahedral
(f)	Which of the following is paramagnetic?
	(i) CO
	(ii) NO ⁺
	(iii) CN
	(iv) O_2^-
	Suprement and to assure the
Ans	wer the following questions: 2×9=18
(a)	Write the physical significance of ψ and ψ^2 . 1+1=2
(b)	Write all possible quantum numbers for—
	(i) valence electron of sodium; (ii) last electron of fluorine. 1+1=2
(c)	Bond angle of H ₂ O is lower than NH ₃ .

Why?

2.

2

(d)	What do you mean by ionization potential? Why is the value of second ionization potential higher than the first ionization potential? 1+1=2	
(e)	Define electron affinity. Electron affinity value increases from nitrogen to fluorine in the periodic table. Explain giving reason.	
(f)	Which of the following orbitals are not possible and why? 2 2p, 2s, 1p, 3f	
(g)	Using VSEPR theory, predict the structures of the following: 1×2=2	
	(i) ClF ₃	
	(ii) XeF ₂	
(h)	Using Fazans' rule, explain that— "AlF ₃ is high-melting solid while AlCl ₃ is low-melting solid".	
(i)	Arrange the following in the increasing order of bond length:)

 $O_2, O_2^-, O_2^+, O_2^{2+}$

3.	Answer any <i>two</i> of the following questions: $4 \times 2 = 8$	3
	(a) (i) State and explain the principles applied to build up the electronic configuration of nitrogen atom.	2
	(ii) Determine the values of n, l, m and s for the electron of hydrogen.	2
	(b) Derive de Broglie equation. Calculate the wavelength associated with a moving electron having kinetic energy $1 \cdot 375 \times 10^{-25}$ J.	
	(Given, $h = 6.626 \times 10^{-34} \text{ J-s}$) $2+2=4$	-
	(c) (i) Write the radial and angular wave functions for hydrogen atom.	2
	(ii) Write a note on contour boundary.	2
	mission to especiate only on and and the	
4.	Answer any <i>two</i> of the following questions: $3 \times 2 = 6$	5
	(a) What is effective nuclear charge? Explain, on the basis of Slater's rule, why 4s-orbital is filled earlier than	
	3 <i>d</i> -orbital taking potassium atom as an example.	3
	(b) What do you mean by electronegativity? Calculate the electronegativity of fluorine using Allred-Rochow equation. (Covalent radius of fluorine = 0 · 72 Å)	
	1+2=3	3

P25/90

(Turn Over)

(c) Nitrogen has positive electron gain enthalpy whereas oxygen has negative. However, oxygen has lower ionization enthalpy than nitrogen. Explain.

3

5. Answer any two of the following questions:

 $3 \times 2 = 6$

(a) What do you mean by percentage of ionic character? HBr molecule has H—Br bond length 1.41×10^{-10} m and its dipole moment is 0.79×10^{-29} cm. Calculate the percentage of ionic character of HBr molecule. (Given, electronic charge = 1.602×10^{-19} C)

1+2=3

(b) What do you mean by hydrogen bond? What are the different types of hydrogen bond? Explain why o-hydroxybenzaldehyde is a liquid whereas p-hydroxybenzaldehyde is a solid.

1/2+1+11/2=3

(c) What do you mean by bond order of a diatomic molecule? The bond dissociation energy of C₂ (599 kJ mol⁻¹) decreases slightly on forming C₂ (513 kJ mol⁻¹) and increases greatly on forming C₂ (818 kJ mol⁻¹). Why?

- 6. Write short notes on any two of the following: $2\frac{1}{2} \times 2 = 5$
 - (a) Solvation energy
 - (b) Defects in solids
 - (c) Mulliken scale of electronegativity
- 7. Explain standard electrode potential. Explain two important applications of it in inorganic reaction. $1+1\frac{1}{2}+1\frac{1}{2}=4$
