1 SEM TDC PHYH (CBCS) C 2

(d) If the mochanical energy of a particle is acted

(November)

PHYSICS

(Core)

Paper: C-2

(Mechanics)

Full Marks: 53
Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct option from the following: 1×5=5
 - (a) A time-dependent linear momentum is given by $p = (2t^2 + 4t + 2) \text{kg m/s}$. The instantaneous force acting on the particle is

(i)
$$(4t^2 + 4)$$
 N

(ii)
$$(2t^2 + 4)$$
 N

(iii)
$$(4t^2 + 4t)$$
 N

(iv)
$$(4t+4)$$
 N

- (b) If the mechanical energy of a particle is conserved, then the particle is acted upon by a
 - (i) non-conservative force
 - (ii) friction
 - (iii) conservative force
 - (iv) drag force
- (c) Weightlessness experienced while orbiting the earth in spaceship is the result of
 - (i) inertia
 - (ii) acceleration
 - (iii) zero gravity
 - (iv) free fall towards the earth
- (d) Velocity of a body moving with simple harmonic motion is

(i)
$$\omega \sqrt{a^2 + y^2}$$

(ii)
$$\omega \sqrt{a^2 - y^2}$$

(iii)
$$\omega^2 \sqrt{a^2 - y^2}$$

(tv) wa

- (e) Coriolis force acting on a particle having velocity in a rotating frame of reference is
 - (i) $2m\frac{\omega}{v}$
 - (ii) $\frac{\omega v}{2m}$
 - (iii) $\frac{\omega}{2mv}$
 - (iv) $2m(\omega \times v)$
- 2. (a) Give the physical significance of moment of inertia.
 - (b) A body of mass 0.2 kg is revolving along a circular path of radius 1 m with a frequency 4 Hz. Determine the magnitude of orbital angular momentum.
 - (c) Find the theoretical limit of Poisson's ratio.
 - (d) Show that under central force the motion takes place in a plane.
 - (e) Show that in SHM the acceleration is directly proportional to its displacement.

2

2

2

3.	equ	ite down Galilean transformation nations and establish that velocity is iant but acceleration is invariant under lilean transformation. 1+2+2	=5
4.	(a)	Establish that a conservative force is a negative gradient of potential energy function U .	3
	(b)	Find an expression for moment of inertia of a rectangular lamina about an axis perpendicular to its plane and passing through the centre of mass.	5
	alogi with	Or Find an expression for moment of inertia of a solid cylinder about an axis passing through the centre of mass and perpendicular to the axis of symmetry.	
5.	(a)	A particle of mass m_2 is initially at rest. Another particle of mass m_1 is moving with a velocity u strikes the particle at rest. If the collision is 1-D elastic collision, find the expression for gain of KE of the particle of mass m_2 .	3
-	(b)	Show that $x^2 + y^2 + z^2 - c^2t$ is invariant under Lorentz transformation.	3
	(c)	Derive an expression for the gravitational potential due to spherical	

shell at a point outside the shell.

5

- 6. Derive the formula of variation of mass of a particle with its relativistic velocity.
- 7. (a) What are different equilibriums? Explain with the help of U-x graph.
 - (b) Define coefficient of viscosity. Write its dimensional formula. $1\frac{1}{2}+\frac{1}{2}=2$
- 8. What are forced and damped oscillations?
 Write their differential equation and show them graphically.

 2+2=4

Or

State and prove the theorem of perpendicular axes of moment of inertia. 1+3=4
