## 6 SEM TDC DSE MTH (CBCS) 3 (H)

2025

(May)

## MATHEMATICS

(Discipline Specific Elective)

( For Honours )

Paper: DSE-3

## ( Discrete Mathematics )

Full Marks: 80

Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. (a) Find the least upper bound of the partially ordered set  $\{(..., -2, -1, 0, 1\}, \le)$ . 1
  - (b) Is the following partially ordered set a lattice? Justify:



- (c) Let  $(L, \leq)$  be a lattice. Show that for any  $a, b, c \in L$ ,  $a \land (a \lor b) = a$ .
- (d) Define a lattice homomorphism. Let  $f:(L_1, \leq_1) \to (L_2, \leq_2)$  be a lattice homomorphism. Show that  $a \leq_1 b \Rightarrow f(a) \leq_2 f(b)$  for any  $a, b \in L_1$ .
- 2. Answer any three of the following:  $5\times3=15$ 
  - (a) Let  $(L, \leq)$  be a lattice. Show that
    - (i)  $b \le c \Rightarrow a \land b \le a \land c$ ,  $a, b, c \in L$
    - (ii)  $a \le b$  and  $a \le c \Rightarrow a \le b \lor c$ ,  $a, b, c \in L$
  - (b) Let  $D_m$  be the set of all positive divisors of m and  $a \mid b$  means a divides b. Show that the lattice  $(D_m, \mid)$  is distributive.
  - (c) Define a chain. Show that every chain  $(L, \leq)$  is a distributive lattice.
  - (d) Let  $S_0 = \{1, 2, ..., 6\}$ ,  $S_1 = \{1, 2, ..., 5\}$ ,  $S_2 = \{1, 2, 3, 5, 6\}$ ,  $S_3 = \{1, 2, 3, 5\}$ ,  $S_4 = \{1, 2, 3\}$ ,  $S_5 = \{1, 2\}$ ,  $S_6 = \{1, 3\}$ ,  $S_7 = \{1\}$  and  $L = \{S_0, S_1, ..., S_7\}$ . Draw the Hasse diagram for the lattice  $(L, \subseteq)$ .

- 3. (a) State True or False: 1
  In a Boolean algebra B,  $(a+b)' = a' \cdot b' \ \forall \ a \ , \ b \in B$ .
  - (b) Show that a lattice L with 3 elements is not a Boolean algebra.
  - (c) Let  $(L, \vee, \wedge)$  be a distributive lattice. Show that for any  $a, b, c \in L$  we have  $a \wedge b = a \wedge c$  and  $a \vee b = a \vee c \Rightarrow b = c$ .
  - (d) Show that the diamond lattice  $M_5$  is modular but the pentagon lattice  $N_5$  is not modular. 2+2=4
- **4.** Answer any three of the following:  $5\times 3=15$

An Euler graph is Hamiltonian

(a) Find a minterm of the variables x, y, z. Obtain the sum of products canonical form of the following Boolean expression in x, y, z:

$$(x+y)z + (y+\overline{x}z)(\overline{x+y})$$

(b) Find a minimal sum-of-products representation of the following Boolean expression using Karnaugh map:

$$abcd + a\overline{b}c\overline{d} + a\overline{b}\overline{c}d + \overline{a}\overline{b}\overline{c}\overline{d} + \overline{a}b\overline{c}\overline{d}$$

(c) Find a minimal expression for the following Boolean expression:

 $\sum$  (7, 9, 10, 11, 14, 15) in a, b, c, d

- (d) Let B be a Boolean algebra and  $a, b \in B$ . Show that—
  - (i)  $(a \cdot b)' = a' + b'$
  - (ii)  $a \cdot b = a \Rightarrow a \cdot b' = 0$
- 5. (a) Is the following graph simple?



- (b) State True or False:

  An Euler graph is Hamiltonian.
- (c) Show that the maximum number of edges in a simple graph with n vertices is  $\frac{n(n-1)}{2}$ .
- (d) Write three properties of an adjacency matrix of a graph.
- (e) Let G be a graph with  $n \ge 2$  vertices and G has exactly two odd vertices. Show that there exists a path between the two odd vertices in G.
- (f) Show that the maximum number of edges in a complete bipartite graph of n

vertices is  $\left[\frac{n^2}{4}\right]$ : 11.01.9.7)  $\boxed{3}$  4

1

3

- **6.** Answer any three of the following:  $5\times 3=15$ 
  - (a) Let  $n \ge 3$  be odd. Show that the number of edge-disjoint Hamiltonian circuits in  $K_n$  is  $\frac{n-1}{2}$ .
  - (b) Show that a connected graph G is Euler iff G can be decomposed into circuits.
  - (c) Prove that a simple graph with n vertices and k components can have at most  $\frac{(n-k)(n-k+1)}{2}$  edges.
  - (d) Prove that a simple graph with n vertices is connected if it has more than  $\frac{(n-1)(n-2)}{2}$  edges.
  - (e) Write a short note on Dijkstra's algorithm.

