6 SEM TDC MTMH (CBCS) C 13

2025

(May)

MATHEMATICS

(Core)

Paper: C-13

(Metric Space and Complex Analysis)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

1.	(a)	Write the symmetric property of metric space.	1
	(b)	Write when a subspace Y of a metric space will be completed.	1
	(c)	Write when a metric is called a trivial metric.	2
	(d)	Define an open set in a metric space.	2
	(e)	Write when a metric space is called complete.	2

Write the nature of the singularity of (c) the function

$$f(z) = \frac{\sin z}{z}$$

- (d) Show that $|z_1 z_2| = |z_1| |z_2|$. 2
- Find the points where the function (e)

$$f(z) = \frac{z}{z^2 + 1}$$

is not continuous.

- 2 Show that $\sin^2 z + \cos^2 z = 1$. 3
- Prove the necessary condition for a (g)function to be analytic. 5

Or

Find the image of the semi-infinite strip $x \ge 0$, $0 \le y \le \pi$ under the transformation $w = e^z$.

- 4. (a) $e^z = 0$, for some complex number z. State true or false. 1
 - Show that $e^{2+3\pi i} = -e^2$. (b) 2
 - (c) Define a simply connected domain. 2
 - Evaluate $\int_0^{\pi/6} e^{i2t} dt$. (d) 3
 - Evaluate $\int_C \frac{z+2}{z} dz$, where C is the (e) semi-circle $z = 2e^{i\theta} \ (0 \le \theta \le \pi)$. 4

Find Im f(z), where

Re $f(z) = e^x(x\cos y - y\sin y)$

of an analytic function f(z).

(1)

- 5. (a) Write when the sequence $\{z_n\}$ converges. 1
 - (b) If a series of complex numbers converges, then write to which nth term converges.
 - (c) Find the limit of the sequence defined by $z_n = -2 + i \frac{(-1)^n}{n^2}$, $n = 1, 2, 3, \dots$ 3
 - (d) Expand $f(z) = \log(1+z)$ in a Taylor series about z=0.

Or

Prove that the series $\sum_{n=1}^{n-1} \frac{z^{n-1}}{2^n}$ converges for |z| < 2.

- 6. (a) Write the statement of Laurent's theorem.
 - (b) Find the Laurent series for

$$f(z) = \frac{z}{(z-1)(z-3)}$$

when 0 < |z-1| < 2.

1

2

6

Or

Investigate the uniform convergence of the series $\sum_{n=0}^{\infty} (-1)^n (z^n + z^{n+1})$.

* * *

	0)	following: $6\times2=12$		
		(i) If (X, d) be a metric space and		
		$x, y, z \in X$ be any three distinct		
		points, then prove that		
		$d(x, y) \ge d(x, z) - d(z, y) $		
		(ii) Prove that in a metric space (X, d) each closed sphere is a closed set.		
		(iii) Prove that interior of a set is an open set.		
2.	(a)	Write when a mapping from one metric space into another is said to be		
	(12)	continuous.	1	
	(b)	Define a contracting mapping.	2	
	(c)	Define uniform continuity in a metric space.	2	
	(d)	Show that every contraction mapping is continuous.	4	
	(e)	Let X and Y be metric spaces and f be a mapping of X into Y . If f is a constant		
		mapping, show that f is continuous. Or	6	
		Prove that a subspace of the real line <i>R</i> is connected if and only if it is an interval.		
3.	(a)	Write when a function of a complex variable is called a many-valued		
		function.	1	
	(b)	Write the area of a parallelogram having sides z_1 and z_2 .	1	