6 SEM TDC DSE PHY (CBCS) 1 (H)

2025

(May)

PHYSICS

(Discipline Specific Elective)
(For Honours)

Paper: DSE-1

(Nuclear and Particle Physics)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct option from the following: 1×5=5
 - (a) The magic numbers are
 - (i) 2, 8, 16, 28, 64, 86, 128
 - (ii) 2, 8, 20, 28, 50, 82, 126
 - (iii) 2, 8, 16, 48, 64, 56, 128
 - (iv) None of the above

(b)	Neutrons have a value of dipole magnetic moment.
	(i) positive
	(ii) negative
	(iii) zero
	(iv) None of the above
(c)	In alpha decay
	(i) mass number A decreases by 4 and atomic number Z increases by 2
	(ii) A decreases by 4 and Z decreases by 2
	(iii) A increases by 4 and Z decreases by 2
	(iv) A increases by 4 and Z increases by 2
(d)	A neutrino is a generation particle.
	(i) 1st
	(ii) 2nd
	(iii) 3rd
	(iv) None of the above

- (e) If Y is the hypercharge, B the baryon number, S the strangeness of a particle, then
 - (i) S = (Y + B)/2
 - (ii) Y = (B + S)/2
 - (iii) Y = (B S) / 2
 - (iv) None of the above
- 2. Show that nuclear density is a constant.

 Describe briefly a method for determination
 of nuclear radius.

 2+3=5

What are mass defect, mass loss and packing fraction for a nucleus? Find the binding energy of $^{64}_{28}$ Ni if the mass of an atom is 63.927958 u, $m_n = 1.008665$ u and $m_H = 1.007825$ u. 3+2=5

- 3. (a) Describe the variation of binding energy per nucleon with mass number. What do the local maxima in the curve indicate?

 3+2=5
 - (b) Describe briefly the contribution of each term of the semi-empirical mass formula to the total binding energy.

 Write any two uses of the semi-empirical mass formula.

 2+2=4

- (c) Describe the similarities of the nucleus with a drop of liquid. Give two dissimilarities between the two. 3+2=5
- 4. (a) Describe how the range of alpha particles can be determined. What is straggling? Write down the relation connecting range and disintegration constant.

 3+1+1=5
 - (b) Describe how Pauli's neutrino hypothesis explained the energy spectrum for beta rays.
- **5.** (a) Describe compound nucleus reaction with example.
 - (b) What is meant by cross-section of nuclear reaction? What are 'partial cross-section'? 3
 - (c) A 7·7 MeV α-particle interacts with a target nucleus ¹⁴/₇N to produce a residual nucleus ¹⁷/₈N and a product particle ¹/₁H. The protons emitted at 90° to the incident beam direction are found to have kinetic energy of 4·44 MeV. Calculate the *Q*-value of the reaction.

3

4

Derive the relation for Q-value of a nuclear reaction.

- 6. Write short notes on any two of the following: $4\times2=8$
 - (a) Bethe-Bloch formula
 - (b) Cherenkov radiation
 - (c) Interaction of neutron with matter
- 7. What are gas-filled detectors? Name any two types of gas-filled detector. Describe the construction and working of a proportional counter with a neat diagram. What is multiplication factor? 2+2+4+1=9

Or

Describe the principle and working of a scintillation detector. Name any two scintillators. Describe the working of a photomultiplier tube. 4+2+3=9

8. Describe the working of a cyclotron. Derive the relation between frequency of the applied radio frequency voltage and applied magnetic field in a cyclotron.

3+2=5

What are tandem accelerators? Describe the construction and working of Van de Graaff generator. 2+3=5

- 9. (a) What is the meson theory of nuclear force? Compare the four fundamental interactions in terms of strength, exchange particle and range. 1+3=4
 - (b) What does 'generation' mean in particle physics? Which particles are the 1st, 2nd and 3rd generation leptons? 1+2=3
 - (c) Which particles constitute vector boson? What is their role in fundamental interactions? 2+1=3
 - (d) Check whether isospin, baryon number and strangeness are conserved in the following reactions:

 3×2=6

(i)
$$\pi^+ + n \rightarrow \Lambda^0 + K^+$$

(ii)
$$\bar{n} \rightarrow \bar{p} + e^+ + v_e$$

What are quarks and gluons? Give the quark composition of the following: 2+4=6

- (i) Neutron
- (ii) Proton
- (iii) Antiproton
- (iv) Neutral pion

* * *