6 SEM TDC PHYH (CBCS) C 14

2025

(May)

PHYSICS

(Core)

Paper: C-14

(Statistical Mechanics)

Full Marks: 53
Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following (any *five*): $1 \times 5 = 5$
 - (a) In the equilibrium state, the thermodynamic probability of a system is
 - (i) zero
 - (ii) maximum
 - (iii) minimum but not 1
 - (iv) one
 - (b) Gibbs' paradox arises due to
 - (i) indistinguishability of classical particles

- (ii) distinguishability of classical particles
- (iii) omittance of quantum nature of the particles
- (iv) absence of inter-particle interaction
- Rayleigh-Jeans law agrees well with the (c) experimental result at
 - (i) low frequency
 - (ii) infinity
 - (iii) high frequency
 - (iv) None of the above
- At high temperature, Bose-Einstein (d) distribution approaches Maxwell-Boltzmann distribution.
 - (i) False
 - (ii) True
 - (iii) Can't say
 - (iv) Sometimes true sometimes false
- From Fermi-Dirac statistics, n_i = (e)

(i)
$$\frac{g_i}{e^{\alpha+\beta\epsilon_i}+1}$$

(i)
$$\frac{g_i}{e^{\alpha+\beta\epsilon_i}+1}$$
 (ii) $\frac{2g_i}{e^{\alpha+\beta\epsilon_i}+1}$

(iii)
$$\frac{g_i}{e^{\alpha+\beta\epsilon_i}-1}$$
 (iv) $\frac{2g_i}{e^{\alpha+\beta\epsilon_i}-1}$

(iv)
$$\frac{2g_i}{e^{\alpha+\beta\varepsilon_i}-1}$$

- Bosons have spin value (f)
 - (i) 0

(ii) 1

- (iii) ½ (iv) 0 or 1

2.	(a)	Define and explain in brief the terms 'macrostate' and 'microstate' with the help of example. 2+2=4
	(b)	Define entropy. Deduce Boltzmann's entropy relation.
	(c)	Treating the ideal gas as a system governed by classical mechanics, derive the Maxwell-Boltzmann distribution law.
		Or
		Derive the partition function for an ideal monatomic gas.
3.	(a)	What do you mean by 'thermal radiation'?
		Or
		If the sun emits maximum energy at wavelength 4753 Å, calculate the temperature of its surface. (Given: Wien's constant $b = 0.288$ cm °C)
	(b)	State and prove Kirchhoff's law of black-body radiation.
	(c)	State and derive Planck's law of black-body radiation. 1+4=5
		State Stefan-Boltzmann law of radiation. Deduce this law on thermodynamic consideration.
4.	(a)	What is photon gas? What is the difference between photon gas and ideal gas? 1+2=3
	(b)	What is Bose-Einstein statistics? Derive

an expression

Explain why behavior of liquid helium cannot be explained by classical statistics. How is it be overcome by quantum mechanics?

4

(c) Bosons may condense at very low temperature. Discuss on the basis of statistical mechanics.

4

5. (a) At absolute zero temperature (T = 0 K) all the energy levels up to ε_f are completely filled. Calculate the total number of fermions in a Fermi gas at T = 0 K and express ε_f in terms of number density (N/V).

6

Or

Derive an expression for Fermi-Dirac law of energy distribution for free electrons in a metal.

(b) What is the cause of degeneracy pressure inside a white dwarf star? Explain the limit depending on which some stars become white dwarf and other become neutron star or black hole. 1+5=6

Or

A system has 7 particles arranged in two compartments. The first compartment has 8 cells and the second has 10 cells. All cells are of equal size. Calculate the number of microstates in the microstate (3, 4) when the particles obey F-D statistics.

6