5 SEM TDC BOT M 3

2018

(November)

BOTANY

(Major)

Course: 503

(Genetics, Plant Breeding and Biostatistics)

Full Marks: 48
Pass Marks: 19/14

Time: 2 hours

The figures in the margin indicate full marks for the questions

- 1. (a) Express the following in 1 word: 1×3=3
 - (i) An alternative form of gene
 - (ii) Replacement of purine base by another purine base
 - (iii) The superiority of an F₁ hybrid over both the parents
 - (b) Choose the correct answers of the following: 1×2=2
 - (i) Phenotypic ratio of blending inheritance is 2:1/3:1/1:2:1.

P9/376

(Turn Over)

- (ii) The point on the scale above and below which lies one-half of the scores is called median/mode/mean.
- (c) Write short notes on the following: 3×3=9
 - (i) Multiple alleles
 - (ii) In vitro culture
 - (iii) Tests of significance
- 2. (a) What are monohybrid and dihybrid experiments? Define 'Law of Independent Assortment'. Explain with an example that Mendel's law of independent assortment is not universally applicable.

 2+2+4=8

Or

Distinguish between transition and transversion. Describe briefly the types of transition mutation found in living organisms.

2+6=8

- (b) Write short notes on any two of the following: 3×2=6
 - (i) Gene cloning
 - (ii) Crossing-over with an example
 - (iii) Inheritance of kappa particles
 - (iv) Concept of gene mapping

3. Define 'hybridization' and state its objectives. Discuss briefly the different steps of hybridization procedure. Also define backcross breeding.
2+2+5+2=11

Or

Write explanatory notes on the following:
6+5=11

- (a) Apomixis and its types
- (b) Mass selection and its importance
- 4. Calculate mean, median and mode from the data given in the following table: 3×3=9

Class interval	Frequency
10-14	4
15–19	5
20-24	8
25–29	7
30–34	15
35–39	13
40-44	7
45-49	6
50-54	2
55–59	3

100

Or

Describe the following:

4+5=9

- (a) Standard deviation
- (b) Role of statistics in biological science

P9-3500/376