5 SEM TDC CHM M 5 (N/O)

2019

(November)

CHEMISTRY (Major)

Course: 505

(Organic Chemistry)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 48

Pass Marks: 14

Time: 2 hours

1. Select the correct answer from the following:

 $1 \times 5 = 5$

- (a) Pyrolysis of trans-3,4-dimethyl-1,5-hexadiene (a Cope rearrangement) gives
 - (i) 2Z, 6E octadiene
 - (ii) 2Z, 6Z octadiene
 - (iii) 2E, 6E octadiene
 - (iv) 2E, 6Z octadiene

(b) The product of the reaction

D-Glucose
$$\xrightarrow{3\text{PhNHNH}_2} \xrightarrow{\text{HCl}} \xrightarrow{\text{Hydrolysis}}$$

is

- (i) phenyl hydrazone of D-glucose
- (ii) D-glucosazone
- (iii) D-fructose
- (iv) D-glucosone
- (c) In DNA, the complementary bases are
 - (i) adenine and guanine; thymine and cytosine
 - (ii) uracil and adenine; cytosine and guanine
 - (iii) adenine and thymine; guanine and cytosine
 - (iv) adenine and thymine; guanine and uracil
- (d) Among the following the narcotic analgesic is
 - (i) ibuprofen
 - (ii) heroin
 - (iii) aspirin
 - (iv) phenacetin

- (e) Which enzyme is present in saliva?
 - (i) Pepsin
 - (ii) Trypsin
 - (iii) Amylase
 - (iv) Invertase

UNIT-I

Answer any one question

2. (a) (i) Explain the formation of major Endo product in the following Diels-Alder reaction:

(ii) Predict the stereochemical outcome from the following electrocyclic reaction:

2E, 4Z, 6E octatriene

(b) Explain with the help of FMO theory that the [1, 3] sigmatropic shift of hydrogen is thermally forbidden.

2

1

(c) What diene and dienophile would you employ to synthesize the following compound?

1

(d) Complete the following reaction and discuss the mechanism involved:

2

- 3. (a) Draw the HOMO and LUMO of ethylene and butadiene. 1+1=2.
 - (b) Predict whether conrotatory or disrotatory motion will take place in the following reactions. Write the structure of the products with stereochemistry:

1+1=2

(ii) $hv \rightarrow ?$

- (c) The Diels-Alder reaction proceeds stereoselectively Syn with respect to both the diene and the dienophile. Explain with suitable examples.
- 2

1

(d) Complete the following reaction:

UNIT-II

Answer any one question

4. (a) Draw the chair conformation of β-D-monopyranose (C-2 epimer of glucose).

1

(b) When D-glucose is reduced with NaBH₄, optically active glucitol results but when optically active D-galactose is reduced, the product is optically inactive. Explain the loss of optical activity.

2

(c) Explain the products obtained in the following periodic oxidation:

3

β-D-fructopyranose MeOH/HCl Methyl-β-D-fructopyranoside

 $\xrightarrow{\text{2HIO}_4} \xrightarrow{\text{Br}_2/\text{H}_2\text{O}} \xrightarrow{\text{SrCO}_3} \xrightarrow{\text{Strontium salt}} \xrightarrow{\text{H}_3\text{O}^+}$

Glycolic acid + Hydroxypyruvic acid

(Turn Over)

hy do aldoses react with Fehling's	
ith NaHSO ₃ ?	2
	1
$\frac{1) \operatorname{Br}_2/\operatorname{H}_2\operatorname{O}}{2) \operatorname{CaCO}_3} \bullet \underbrace{A} \xrightarrow{\operatorname{H}_2\operatorname{O}_2} \bullet \underbrace{B}$	
efine epimerisation. Explain it onsidering the conversion of mannose to D-glucose.	2
redict whether D-glucose is a furanose pyranose form, from the following kidative degradation:	3
$\underbrace{\text{MeOH/HCl}}_{\text{Me}_2\text{SO}_4/\text{NaOH}} \underbrace{\left(A\right)}_{\text{B}}$	
	7
xplain mutarotation taking D-glucose s an example.	2
onvert D-ribose to its epimeric Idohexoses by using an ascending order reaction.	2
That happens when D-glucopyranose eacts with acetone in presence of	
₂ SO ₄ ?	2
xplain why D-mannose and D-fructose we the same osazone.	2
(Continued	d)
	omplete the following reactions: Threose 1) Br ₂ /H ₂ O A H ₂ O ₂ B efine epimerisation. Explain it onsidering the conversion of reactions to D-glucose. Threose to D-glucose is a furanose of pyranose form, from the following redative degradation: MeOH/HCI A Me ₂ SO ₄ /NaOH B C [O] Optically active dimethoxy succinic acid + Mesotrimethoxy glutaric accompliant in mutarotation taking D-glucose is an example. Threose to its epimeric lidohexoses by using an ascending order reaction. That happens when D-glucopyranose exacts with acetone in presence of 2SO ₄ ? Explain why D-mannose and D-fructose

UNIT-III

Answer any one question

6.	(a)	Draw the structures of the following: 1×2:	=2
		(i) Guanodylic acid (GMP) (ii) deoxycytidylic acid (d-CMP)	
	(b)	Synthesize thymine from urea.	2
	(c)	Discuss the Watson and Crick double-helix model of DNA.	3
	(d)	Give evidences that in a adenosine or guanosine, the sugar unit is linked at position (N-9) of the purine.	2
7.	(a)	How would you synthesize uracil from malic acid and urea?	2
		Or	
		Synthesize adenine from thiourea and malenonitrile.	
	(b)	What do you understand by the term genetic code? Discuss briefly the chemical basis of heredity.	3
	(c)	(i) Certain diseases are caused by enzyme deficiencies. Give two examples.	1
20P	/366	(Turn Ou	er)

dissolve the blood clot.

examples.

(d) Explain why hydrogen bonds between DNA strands are specific. Explain giving

(ii) Name the enzyme which is used to

		PINCON DESCRIPTIONS	
		Unit—IV	
3.	(a)	Write in brief about the medicinal importance of azadirachtin present in neem.	2
	(b)	Draw the structure of Ranitidine and give its medicinal importance. 1+1:	=2
	(c)	Write down the synthesis of chloramphenicol starting from benzaldehyde.	2
		Or	
		Synthesize chloroquine using the following sequential steps :	
		(i) Synthesis of 4,7-dichloroquinoline from <i>m</i> -chloroaniline and oxalyl acetic ester	
		(ii) Synthesis of chloroquine from the	

above quinoline derivative and 5-diethyl amino 2-amino pentane

1

	(d)	Name the substance which can act as both analgesic and antipyretic.	1
	(e)	How do the sulpha drugs prevent the growth and multiplication of bacteria when administered into a host body?	2
e de		Unit—V	
9.	(a)	Synthesize citral by using the following sequence of reactions:	2
	6-M	ethylhept-5en-2one $\xrightarrow{1/62^{13}}$)
		Cit $ \xrightarrow{\text{Allylic rearrangement}} Cit $	rai
r	(b)	How will you show that citral has an αβ- unsaturated aldehydic group?	1
	(c)	Discuss the mechanism of hydration of geraniol or nerol to α-terpineol.	2
		Or	
		Synthesize α -terpineol from p -toluic acid.	
	(d)	What happens when α-terpineol is subjected to oxidative degradation with alkaline KMnO ₄ , CrO ₃ subsequently?	2

20P/366

(Turn Over)

(Old Course)

Full Marks: 48
Pass Marks: 19

Time: 3 hours

1. Select the correct answer/Answer the following: 1×5=5

(a) The product obtained during the following photochemical ring cleavage is

- (b) Fructose reduces Tollens reagent due to
 - (i) asymmetric carbons
 - (ii) primary alcoholic group
 - (iii) secondary alcoholic group
 - (iv) enolization of fructose followed by conversion to aldehyde by base

- (c) Adenosine is an example of a
 - (i) purine base
 - (ii) nucleotide
 - (iii) nucleoside
 - (iv) pyridoxine base
- (d) Draw the structure of ibuprofen. Give one important use of it.
- (e) What are geranial and neral?

UNIT-I

Answer any one question

- 2. (a) With the help of FMO approach show that [4+2] cycloaddition is thermally allowed but photochemically forbidden.
 - (b) Predict the products and stereochemistry in the following reactions:

(2E, 4Z, 6Z, 8E) decatetraene
$$\Delta$$
 (-10 °C) Δ (20 °C) Δ (20 °C) Δ (20 °C) Δ (20 °C)

(c) What diene and dienophile would you employ to synthesize the following compound?

O

Me

(Turn Over)

- (d) Draw the product formed in the following thermal ring closure: 1 $CH_3OOC \longrightarrow COOCH_3 \longrightarrow ?$
- 3. (a) Complete the following reaction and discuss the mechanism involved: 2
 - (b) Draw the MO of 1,3-butadiene indicating HOMO in the ground and excited state.
 - (c) Write the product with stereochemistry of the following reactions: 1½×2=3
 - (i) trans-trans-2,4hexadiene +

$$CH_3O-C-C\equiv C-C-OCH_3 \xrightarrow{\Delta} ?$$

(ii) Butadiene + Dimethylmaleate $\xrightarrow{\Delta}$? (cis-dienophile)

UNIT-II

Answer any one question

4. (a) Sketch the conformation of α-D-fructopyranose.

	(b)	Predict whether D-fructose is a furanose
		or pyranose form from the following
		evidences: 4
D-Fr	nictose	$\underbrace{\text{MeOH/HCl}}_{\text{MeOH/HCl}} \underbrace{A} \underbrace{\text{Excess Me}_2 \text{SO}_4/\text{NaOH}}_{\text{B}} \underbrace{B}$
C ₆ H	1206	
8	1)	$\frac{\text{dil. HCl}}{\text{dil. HNO}_3} \underbrace{C} \xrightarrow{\text{KMnO}_4} \delta \text{ lactone} \xrightarrow{\text{Oxidation}}$
	2)	
		Arabinotrimethoxyglutaric acid
	(c)	Complete the following reaction: 2
		D-Glucose → D-Glucosazone
		CuSO ₄ solution Glucosotriazole
	(d)	What happens when methyl α-D-
		arabinopyranoside is treated with
		HIO ₄ ?
	(e)	Convert D-ribose to a pair of epimeric-
		D-aldohexoses by using Fischer-Kiliani
		synthesis. 2
5.	(a)	Explain that both α-D-glucopyranose
		and α-D-allopyranose give the same
		strontium salt having same specific
		rotation by using periodic oxidation. 3
	(b)	Convert D-fructose to epimeric
		aldohexoses. 2
	(c)	Complete the following reaction: 2
		D-glucopyranose Na-Hg/H ₂ O or NaBH ₄
		or NaBH ₄
		Optically active glucitol HI/red P
20P	366	(Turn Over)

	(d)	Explain mutarotation taking D-glucose as an example. 2
	(e)	D-glucose reacts with HCN but not with NaHSO ₃ . Explain.
	edinda jojiil metuk	UNIT—III Answer any one question
6.	(a)	Synthesize an important purine present in both DNA and RNA. 2
	(b)	Draw the structures of the following: 1×2=2
		(i) Nucleoside of Adenosine (ii) Nucleotide of AMP
	(c)	What do you understand the term genetic code? Discuss briefly the chemical basis of heredity.
	(d)	What are coenzymes? Discuss their functions. 1+1=2
7.	(a)	How would you synthesize uracil from urea and ethyl acrylate?
	(b)	What are complementary bases? Draw the structure to show H-bonding between adenine and thymine. 1+1=2
	(c)	What are enzymes? Name two diseases caused due to the deficiency of enzyme. 2
20P/	366	(Continued)

(d) Name the products obtained on complete hydrolysis of DNA. In what way a nucleotide differs from a nucleoside? Illustrate with examples.

1+2=3

2

2

3

UNIT-IV

Answer any one question

- 8. (a) Give the preparation of the following:

 2×2
 - (i) Ibuprofen from isobutyl benzene
 - (ii) Sulphaguanidine
 - (b) Write in brief about the medicinal importance of curcumin. 2
 - (c) Write the structure of chloramphenicol. 1
 - (d) Synthesize sulphanilamide from sulphanilic acid.
- 9. (a) Write down the method of preparation of one analgesic drug.
 - (b) Using following diester and amino alkane, how would you synthesize an anti-malarial drug?

 H_{SC_2O} and NH_2 $N(C_2H_5)_2$

(c) Name a broad spectrum antibiotic and state two diseases for which it is prescribed. 1+1=2

(Turn Over)

20P/366

	(d)	Prepare Aspirin by using a Green method.	2
		UNIT—V Answer any one question	
10.	(a)	Establish the structure of citral.	4
	(b)	What products would you recover from the ozonolysis of the following terpenoids?	2
		them and throde in might the mark	
	(c)	Giving one example, state isoprene rule.	1
11.	(a)	Synthesize α -terpineol from p -toluic acid.	2
	(b)	In citral one of the double bonds is at α,β -position w.r.t., aldehydic group. Explain.	2
	(c)	Complete the following oxidative degradation of α -terpineol :	3
	erpen (C ₁₀)	$\frac{1\% \text{ alk.}}{\text{KMnO}_4} \Rightarrow \text{a trihydroxy compound} \xrightarrow{\text{CrO}_3} \Rightarrow$	
		ketohydroxy acid \rightarrow ketolactone (C ₁₀) \rightarrow KMnO ₄	
		Terpenylic acid → Terebic acid	i
,		***	
20P-	-550	00/366 5 SEM TDC CHM M 5 (N/	O)