5 SEM TDC CHM M 7 (N/O)

2019

(November)

CHEMISTRY

(Major)

Course: 507

(Symmetry and Quantum Chemistry)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 48
Pass Marks: 14

Time: 2 hours

1. Select the correct answer from the following:

1×5=5

- (a) The function which is acceptable in quantum mechanics over the range x varying between 0 and 2π is
 - (i) $\cos x$

(ii) tan x

(iii) cotx

(iv) cosec x

20P/371

(Turn Over)

(b)	According to	0	quantum	mechanics,	the
	correct wave	e	function i	s	

(i) $\Psi_{1,1,0}$

- (ii) \\ \psi_{2,1,0}
- (iii) Ψ2,-1,0
- (iv) \\ \psi_3, 3, 0
- The degree of degeneracy of the energy (c) level

$$\frac{17h^2}{8ma^2}$$

of a particle in a cubical box is

(i) 3

(ii) 0

(iii) 2

- (iv) 6
- $\sin(k_1x)\sin(k_2y)\sin(k_3z)$ is (d) an eigenfunction of operator ∇^2 . Eigenvalue is
 - (i) $-(k_1^2 + k_2^2 + k_3^2)$ (ii) $(k_1^2 + k_2^2 + k_3^2)$

(iii) 1

- (iv) $(k_1^2 + k_2^2)$
- The point group of CH4 is (e)
 - (i) T_d

(ii) D_{2h}

(iii) C2,,

(iv) C3"

- 2. Answer any *five* questions from the following: 2×5=10
 - (a) Explain rotation-reflection axis (S_n) in symmetry.
 - (b) Write down the Hamiltonian operator for H₂⁺ ion with proper significance of each term.
 - (c) Write down the operators corresponding to momentum and kinetic energy.
 - (d) An electron is confined to a molecule of length 1 nm. Find its zero-point energy.
 - (e) What are orthogonal and normalized wave functions?
 - (f) Show that the following functions are orthogonal in the interval $0 \le x \le 2\pi$:
 - (i) $\left(\frac{1}{\pi}\right)^{\frac{1}{2}}\cos nx$
 - (ii) $\left(\frac{1}{\pi}\right)^{\frac{1}{2}}\sin nx$

UNIT-I

- **3.** Answer any *three* questions from the following: 3×3=9
 - (a) Write down the symmetry elements and point groups of the following:
 - (i) C2H4
 - (ii) [PtC1₄]²⁻
 - (iii) CHCl₃
 - (b) Explain with suitable examples the following symmetry elements and the associated symmetry operations:
 - (i) Axis of rotation
 - (ii) Symmetry planes
 - (iii) Centre of inversion
 - (c) Construct the group multiplication table for the point group $C_{3\nu}$.
 - (d) Write short notes on any one of the following:
 - (i) Great orthogonality theorem
 - (ii) Abelian groups and non-Abelian groups

UNIT-II

Ansv	ver a	ny two questions: $9\times2=1$	8
4.	(a)	Explain the meaning of the term 'degenerate energy levels' by taking the example of a free particle in a cubical box. What would happen to the degeneracy when the cubical box is distorted?	3
	(b)	Deduce the Schrödinger's wave equation on the basis of classical wave concept.	3
	(c)	A particle of mass m is confined in a one-dimensional box of length a . Calculate the probability of finding the particle in the region $0 \le x \le \frac{a}{2}$.	3
5 .	(a)	for a particle moving freely in a one-dimensional box. Find the	
	(b)	eigenfunction and energy. For a particle of mass m in a one-dimensional box of length a , show that ψ_1 and ψ_2 are orthogonal.	4
6.	(a)	Write down the equation showing Hamiltonian operator for one-dimensional harmonic oscillator.	2
20P/	371	(Turn Over	r

(b) Prove that 1s wave function of hydrogen atom given by

$$\psi_{1s}$$
, i.e., $\psi_{1, 0, 0} = \frac{1}{\sqrt{\pi}a_0^{3/2}}e^{-r/a_0}$

is a normalized wave function, where a_0 represents Bohr radius.

(c) Write down the Schrödinger's wave equations for the (i) rigid rotator and (ii) hydrogen atom in spherical polar coordinates.

UNIT-III

7. (a) Explain the valence bond treatment for H₂ molecule.

Or

- (i) Explain why H_2 molecule is more stable than H_2^+ molecule ion.
- (ii) State the conditions for effective combination of atomic orbitals to form molecular orbitals.
- (b) Write the differences between bonding and antibonding molecular orbitals.

Or

Write the molecular orbital configuration of CN ion and predict its magnetic character. 4

3

4

2

2

2

(Old Course)

Full Marks: 48
Pass Marks: 19

Time: 3 hours

1. Select the correct answer from the following: 1×5=5

- (a) The function which is acceptable in quantum mechanics over the range x varying between 0 to 2π is
 - (i) cosx

(ii) tan x

(iii) cotx

(iv) cosec x

(b) A wave function ψ satisfies the equation

$$\int_{-\infty}^{+\infty} \psi^* \psi \ dx = 1$$

The function is said to be

- (i) diagonal
- (ii) normalized
- (iii) orthogonal
- (iv) orthonormal
- (c) The degree of degeneracy of the energy level

$$\frac{17h^2}{8ma^2}$$

of a particle in a cubical box is

(i) 3

(ii) 0

(iii) 2

(iv) 6

(Turn Over)

- (d) The operator corresponding to the total energy of a system written as the sum of kinetic energy and potential energy is called
 - (i) Hamiltonian operator
 - (ii) kinetic energy operator
 - (iii) momentum operator
 - (iv) None of the above
- (e) The point group of CH₄ is
 - (i) T_d

(ii) D_{2h}

(iii) C2"

- (iv) C₃₁₁
- 2. Answer any five questions from the following: 2×5=10
 - (a) Explain rotation-reflection axis (S_n) in symmetry.
 - (b) Write any two differences between VBT and MOT.
 - (c) Write down the operators corresponding to momentum and kinetic energy.
 - (d) Calculate the zero-point vibrational energy of a one-particle, onedimensional system, if

$$E_{v} = \left(v + \frac{1}{2}\right)hv_{0}$$

- (e) What are orthogonal and normalized wave functions?
- (f) Show that the energy spacing for a particle restricted in one-dimensional box is not equal.

UNIT-I

- 3. Answer any three questions from the following: 3×3=9
 - (a) Write down the symmetry elements and point groups of the following:
 - (i) C2H2
 - (ii) [PtCl₄]²⁻
 - (iii) CHCl₃
 - (b) Explain with suitable examples the following symmetry elements and the associated symmetry operations:
 - (i) Axis of rotation
 - (ii) Symmetry planes
 - (iii) Centre of inversion
 - (c) Construct the group multiplication table for the point group C_{3v} .
 - (d) Explain the terms 'reducible' and 'irreducible' representation.

UNIT-II

Ans	wer a	any two questions: 9×2	=18
		Shineds, Adiatio out year, moule (il)	
4.	(a)	Sketch ψ and ψ^2 for the states $n=3$ and $n=4$ of a particle in a one-dimensional box.	. 3
	(b)	Solve Schrödinger's wave equation for a particle moving freely in a three-dimensional box. Find the eigen-	2
	(c)	function and energy. Explain the meaning of the term 'degenerate energy levels'.	4
		mi) CHQ15	
5.	(a)	Define rigid rotator. Write the Schrödinger's wave equation for this system and separate the variables. 1+4	4=5
	(b)	For a particle of mass m in a one-dimensional box of length a , show that ψ_1 and ψ_2 are orthogonal.	4
6.	(a)	Sketch the variation of radial probability density against the distance from the nucleus for 2s state for hydrogen atom.	2

(b) Prove that 1s wave function of hydrogen atom given by

$$\psi_{1s}$$
, i.e., $\psi_{1, 0, 0} = \frac{1}{\sqrt{\pi}a_0^{3/2}}e^{-r/a_0}$

is a normalized wave function, where a_0 represents Böhr radius.

4

3

4

(c) Write down the Schrödinger's wave equations for the (i) simple harmonic oscillator and (ii) hydrogen atom.

UNIT-III

- 7. (a) Explain the valence bond treatment for H₂ molecule.
 - (b) Write the MO configuration of CN ion and predict its magnetic character. 2

Or

Write the differences between bonding and antibonding molecular orbitals.
