5 SEM TDC CHM M 1 (N/O)

2018

(November)

CHEMISTRY

(Major)

Course: 501

(Physical Chemistry—II)

(New Course)

Full Marks: 48
Pass Marks: 14

Time: 2 hours

The figures in the margin indicate full marks
for the questions

- 1. Select the correct answer of the following: $1 \times 5 = 5$
 - (a) For the reaction, $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$; $\frac{d[NH_3]}{dt} = 4 \times 10^{-4} \text{ mol dm}^{-3} \text{ s}^{-1}. \text{ The rate}$

of decomposition of N2 is

- (i) $6 \times 10^{-4} \text{ mol dm}^{-3} \text{ s}^{-1}$
- (ii) $8 \times 10^{-4} \text{ mol dm}^{-3} \text{ s}^{-1}$
- (iii) $2 \times 10^{-4} \text{ mol dm}^{-3} \text{ s}^{-1}$
- (iv) 10⁻⁴ mol dm⁻³ s⁻¹

- (b) Which of the following 0.01 m aqueous solutions will have the lowest freezing point?
 - (i) KNO₃
 - (ii) Al (NO₃)₃
 - (iii) C₆H₁₂O₆
 - (iv) Ba(NO3)2
- (c) The exothermic formation of ClF₃ is represented by the reaction

 $Cl_2(g) + 3F_2(g) \rightleftharpoons 2ClF_3(g); \ \Delta_r H = -329 \text{ kJ}$

Which of the following will increase the quantity of ClF₃ in an equilibrium mixture of Cl₂, F₂ and ClF₃?

- (i) Increasing the temperature
- (ii) Removing Cl₂
- (iii) Increasing volume of the container
- (iv) Adding F2
- (d) Adsorption is accompanied by
 - (i) decrease in enthalpy and increase in entropy
 - (ii) increase in enthalpy and increase in entropy
 - (iii) decrease in enthalpy and decrease in entropy
 - (iv) increase in enthalpy and decrease in entropy

(e) The gold numbers of A, B, C and D are 0.04, 0.002, 10 and 25 respectively. The protecting powers of A, B, C and D are in the order

(i)
$$A > B > C > D$$

(ii)
$$B > A > C > D$$

(iv)
$$C > A > B > D$$

2. Answer any five questions of the following:

2×5=10

- (a) Show that a first-order reaction can be studied even when the initial concentration of the reactant is unknown.
- (b) A solution contains 6 g urea and 18 g glucose in 1000 cc of water at 27 °C. Calculate the osmotic pressure of the solution.
- (c) Show that

$$\left(\frac{\partial \mu_i}{\partial p}\right)_{T, n_1, n_2, \dots} = \overline{V_i}$$

- (d) Heat of adsorption is greater for chemisorption than physisorption. Why?
- (e) State and explain Hardy-Schulze rule.

- (f) Describe how the activation energy of a reaction may be determined.
- (g) What is fugacity? Write its physical significance.

UNIT-I

3. Answer any two questions of the following:

6×2=12

(a) Using a suitable mechanism for the reaction $H_2 + Br_2 \rightarrow 2HBr$; and assuming steady-state approximation for H and Br, derive the following rate expression for the formation of HBr

$$\frac{d[HBr]}{dt} = \frac{k[H_2][Br_2]^{\frac{1}{2}}}{1+k'\frac{[HBr]}{[Br_2]}}$$

where k and k' are constants.

6

(b) (i) Show that for a first-order reaction, the time required for 99.9% completion of the reaction is 10 times that required for 50% completion.

2

(ii) Discuss the limitations of the bimolecular collision theory of gaseous reaction.

2

(iii) Give one example of pseudounimolecular reaction.

1

(iv) What is steady-state approxi-

1

1

P9/273

(Continued)

(c) The following mechanism has been suggested for the decomposition of O₃:

$$O_3 \xrightarrow{k_1} O_2 + O$$

$$O_3 + O \xrightarrow{k_2} 2O_2$$

Assuming $k_{-1}[O_2] > k_2[O_3]$, show that the rate of the overall reaction is

$$-\frac{d[O_3]}{dt} = \frac{k[O_3]^2}{[O_2]}$$

What could be concluded from the appearance of $\frac{1}{[O_2]}$ in the rate equation? 5+1=6

UNIT-II

- 4. Answer any one question of the following:
 - (a) (i) State Nernst distribution law. How is the law modified when the solute undergoes association in one of the solvents?

 1+3=4
 - (ii) State Henry's law.

(b) Explain the term 'molal elevation constant'. Derive the relation between the boiling point elevation of a solution and the mole fraction of the dissolved solute. How is the expression utilized for determining molar mass of non-volatile solute?

1+3+1=5

5

UNIT-III

5. Answer any two questions of the following:

31/2×2=7

(a) With the help of Le Chatelier's principle, work out the condition which would favour the formation of SO₃(g) in the reaction

2SO₂(g) + O₂(g) \rightleftharpoons 2SO₃(g); $\Delta_r H = -189.4 \text{ kJ}$ 3½

- (b) Explain the term 'chemical potential'.

 Derive Gibbs-Duhem equation for twocomponent system. 1+2½=3½
- (c) Deduce the relationship between ΔG° and K_c of a reversible reaction. $3\frac{1}{2}$

UNIT-IV

- 6. Answer any one question of the following:
 - (a) Derive Langmuir adsorption isotherm and show that Freundlich isotherm is a special case of this isotherm. 3+1=4
 - (b) (i) Write four differences between physical adsorption and chemical adsorption.
 - (ii) Give reason why a finely divided substance is more effective as an adsorbent.

2

2

UNIT-V

7.	Answer any one question of the following:				
	(a)	(i)	Distinguish between peptization and coagulation of colloids.	2	
		(ii)	Explain why lyophilic sols are more stable than lyophobic sols.	2	
		(iii)	Define zeta potential.	1	
	(b)	Writ	te short notes on the following : $2\frac{1}{2} \times 2^{\frac{1}{2}}$	=5	
		(i)	Protective action of lyophilic colloid		
		(ii)	Donnan membrane equilibria		

(Old Course)

Full Marks: 48
Pass Marks: 19

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Select the correct answer of the following: $1 \times 5=5$
 - (a) For the reaction, $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$; $\frac{d[NH_3]}{dt} = 4 \times 10^{-4} \text{ mol dm}^{-3} \text{ s}^{-1}. \text{ The rate}$

of decomposition of N₂ is

- (i) $6 \times 10^{-4} \text{ mol dm}^{-3} \text{ s}^{-1}$
- (ii) 8×10^{-4} mol dm⁻³ s⁻¹
- (iii) 2×10^{-4} mol dm⁻³ s⁻¹
- (iv) 10^{-4} mol dm⁻³ s⁻¹
- (b) Which of the following 0.01 m aqueous solutions will have the lowest freezing point?
 - (i) KNO3
 - (ii) Al (NO₃)₃
 - (iii) C₆H₁₂O₆
 - (iv) Ba(NO3)2

- (c) A buffer solution is prepared by mixing equal concentration of acid (ionization constant K_a) and a salt. The pH of buffer is
 - (i) $pK_a + 7$
 - (ii) $14 pK_a$
 - (iii) pKa
 - (iv) $pK_a + 1$
- (d) Adsorption is accompanied by
 - (i) decrease in enthalpy and increase in entropy
 - (ii) increase in enthalpy and increase in entropy
 - (iii) decrease in enthalpy and decrease in entropy
 - (iv) increase in enthalpy and decrease in entropy
- (e) The gold numbers of A, B, C and D are 0.04, 0.002, 10 and 25 respectively. The protecting powers of A, B, C and D are in the order
 - (i) A > B > C > D
 - (ii) B > A > C > D
 - (iii) D > C > B > A
 - (iv) C > A > B > D

2. Answer any five questions of the following:

2×5=10

- (a) Show that half-life period (t_{1/2}) of a firstorder reaction is independent of the initial concentration of the reactant.
- (b) A solution contains 6 g urea and 18 g glucose in 1000 cc of water at 27 °C. Calculate the osmotic pressure.
- (c) An aqueous solution of CH₃COONa is basic. Why?
- (d) Heat of adsorption is greater for chemisorption than physisorption. Why?
- (e) State and explain Hardy-Schulze rule.
- (f) Describe how the activation energy of a reaction may be determined.
- (g) Distinguish between solubility product and ionic product.

UNIT-I

3. Answer any two questions of the following:

6×2=12

(a) Using a suitable mechanism for the reaction H₂ + Br₂ →2HBr; and assuming steady-state approximation for H and Br, derive the following rate expression for the formation of HBr :

$$\frac{d[HBr]}{dt} = \frac{k[H_2][Br_2]^{\frac{1}{2}}}{1 + k' \frac{[HBr]}{[Br_2]}}$$

where k and k' are constants.

6

(b) (i) Show that for a first-order reaction, the time required for 99.9% completion of the reaction is 10 times that required for 50% completion.

2

(ii) Discuss the limitations of the bimolecular collision theory of gaseous reaction.

2

(iii) Give one example of pseudounimolecular reaction.

1

(iv) What is steady-state approxi-

(c) The following mechanism has been suggested for the decomposition of O₃:

$$O_3 \xrightarrow{k_1} O_2 + O$$

$$O_3 + O \xrightarrow{k_2} 2O_2$$

Assuming $k_{-1}[O_2] > k_2[O_3]$, show that the rate of the overall reaction is

$$-\frac{d[O_3]}{dt} = \frac{k[O_3]^2}{[O_2]}$$

What could be concluded from the appearance of $\frac{1}{[O_2]}$ in the rate equation? 5+1=6

UNIT-II

- 4. Answer any one question of the following:
 - (a) (i) State Nernst distribution law. How is the law modified when the solute undergoes association in one of the solvents?
 - (ii) State Henry's law.

1

(b) Explain the term 'molal elevation constant'. Derive the relation between the boiling point elevation of a solution and the mole fraction of the dissolved solute. How is the expression utilized for determining molar mass of non-volatile solute?

1+3+1=5

UNIT-III

- 5. Answer any *two* questions of the following: $3\frac{1}{2} \times 2=7$
 - (a) Derive an expression for the pH of an aqueous solution of a salt of strong acid and weak base.

 3½
 - (b) Define ionic product of water. Explain the effect of temperature on ionic product of water. Show that

 $pK_w = pH + pOH$ $1+1+1\frac{1}{2}=3\frac{1}{2}$

- (c) (i) Define buffer capacity. 1
 - (ii) Derive Henderson equation for a basic buffer solution. 21/2

UNIT-IV

6.	Ans	swer	any one question of the following:	4
	(a)	and	rive Langmuir adsorption isotherm is show that Freundlich isotherm is a cial case of this isotherm. 3+1	=4
	(b)	(i)	Write four differences between physical adsorption and chemical adsorption.	2
		(ii)	Give reason why a finely divided substance is more effective as an adsorbent.	2
			Unit—V	
7.	Ans	wer a	any one question of the following:	5
	(a)	(i)	Distinguish between peptization and coagulation of colloids.	2
		(ii)	Explain why lyophilic sols are more stable than lyophobic sols.	2

(15)

- (b) Write short notes on the following: $2\frac{1}{2} \times 2 = 5$
 - (i) Protective action of lyophilic colloid
 - (ii) Donnan membrane equilibria
