5 SEM TDC CHM M 3 (N/O)

2018

(November)

CHEMISTRY

(Major)

Course: 503

(Inorganic Chemistry—II)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 48
Pass Marks: 14

Time: 2 hours

1. Select the correct answer from the following:

 $1 \times 5 = 5$

- (a) The oxidation states of metal atoms in halide and oxide clusters have
 - (i) low formal oxidation states +1, 0, -1
 - (ii) high formal oxidation states +2 to +3
 - (iii) low formal oxidation states +3 to +5
 - (iv) None of the above

- (b) Bromocresol is an example of
 - (i) redox indicator
 - (ii) neutralization indicator
 - (iii) metal ion indicator
 - (iv) adsorption indicator
- (c) Co(CO)3 is isolobal with
 - (i) CH2
 - (ii) CH2
 - (iii) CH
 - (iv) CH₃
- (d) C₅₄H₄₅ClP₃Rh is
 - (i) Vaska's compound
 - (ii) Wilkinson's catalyst
 - (iii) Cupferron
 - (iv) Zeise's salt
- (e) 4-(4-nitrophenylazo) resorcinol is mainly used for determining the presence of
 - (i) Ca in solution
 - (ii) Mg in solution
 - (iii) Na in solution
 - (iv) Li in solution

- 2. Answer the following questions: 2×4=8
 - (a) Outline the conditions necessary for isolobality of two molecular fragments.
 - (b) Give an example of reaction in which $HCo(CO)_4$ is used as catalyst.
 - (c) Give the classification of metal cluster compounds.
 - (d) Write the preparation of a cobalt nitrosyl compound.
- 3. Answer any three questions: 3×3=9
 - (a) Define oxidative addition and reductive elimination reactions with examples.
 - (b) Draw the reaction path for hydrogenation of olefin with the help of Wilkinson's catalyst.
 - (c) What is 18-electron rule? Examine the 18-electron rule in the following compounds: 1+½×4=3
 - (i) Co2(CO)8
 - (ii) Mn(CO)6
 - (iii) Fe₂(CO)₉
 - (iv) $Fe(CO)_2 (\alpha C_5H_5) (\pi C_5H_5)$
 - (d) Discuss the structure and bonding of anion of Zeise's salt.

4.	Ans	swer the following questions : 4×2=	=8
	(a)	Explain the structure and bonding of ferrocene. (Give emphasis on orbital diagram, orbital symmetry and energy.)	
		W. O. BOLLSON L. Margarette, Co. A. A. B.	4
	(b)		2
		(ii) Predict the structures of the following clusters in the light of PSEP theory:	2
		(1) [Fe ₄ (CO) ₁₃] ²⁻	
		(2) [Os ₅ (CO) ₁₆]	
5.	Ans	swer any <i>two</i> questions : 3×2=	=6
	(a)	Outline the synthesis of a low-nuclearity carbonyl cluster. Discuss the structure of the cluster. 1+2=	=3
	(b)	What are nitrosyl complexes? Give the preparation of nitrosoferrous sulphate.	
	(c)	Give a common discussion for structure and bonding of metal nitrosyl compound.	
6.	Ans	swer any two questions: 3×2=	=6
	(a)	Discuss about the nature and type of indicator used in the titration of—	
		(i) strong acid and weak base;	
		(ii) strong acid with strong base.	
	(b)	Define accuracy, precision and mean deviation.	

(c) Analysis of a sample of CaCl₂ gave the following percentage values for Ca content:

10.08, 10.12, 10.21, 10.16, 10.09 10.14, 10.18, 10.11, 10.14, 10.07 Calculate the standard deviation.

- (d) Write a note on adsorption indicator.
- 7. Discuss the uses of the following reagents in inorganic analysis (any three): 2×3=6
 - (a) Magneson
 - (b) 1,10-phenanthroline
 - (c) 8-hydoxyquinoline
 - (d) Salicylaldoxime
 - (e) Dithizone

(Old Course)

Full Marks: 48
Pass Marks: 19

Time: 3 hours

1. Select the correct answer from the following:

1×5=5

(a) The total electron count of a cluster is 12n+2(n+1). The structure will be

(i) hypo

(ii) arachno

(iii) nido

(iv) closo

(b) Sodium nitroprusside contains which of

(c) Methylene blue is an example of

(i) adsorption indicator

(ii) NO+

(iv) NO2-

the following species?

(i) NO

(iii) NO-

		(ii) redox indicator		
		(iii) acid-base indicator		
		(iv) metal-ion indicator		
	(d)	Wilkinson's catalyst is		
		(i) [HCo(CO) ₄]		
		(ii) [RhCl(PPh ₃) ₃]		
		(iii) [Rh(PPh ₃) ₃ H ₂ O]Br		
		(iv) [IrCl(CO)(PPh ₃) ₂]		
	(e)	Co(CO) ₃ is isolobal with		
		(i) CH ₂ (ii) CH ₂		
		(iii) CH (iv) CH ₃		
•	Ans	wer the following questions: 2×5=10		
	(a)			
		the help of Vaska's compound.		
	(b)	Give a method of preparation of nitroso-		
		ferrous sulphate.		
	(c)	Mention the conditions necessary for		
		isolobality of two molecular fragments.		
13	373	(Continued)		

- (d) Fe₂(CO)₉ contains both bridging and terminal CO. Justify the statement.
- (e) Define standard deviation and mean deviation.

3. Answer any three questions :

3×3=9

- (a) Discuss the bonding in Zeise's salt in the light of DCD model.
- (b) Give the reaction path of hydrogenation of olefin with the help of Wilkinson's catalyst.
- (c) Discuss about the bonding in mononuclear metal carbonyls.
- (d) Give the preparations of ferrocene and Zeise's salt.

4. Answer any three questions:

3×3=9

- (a) Discuss the bonding between NO and the metal atom showing NO as (i) 3-electron donor, (ii) 2-electron donor and (iii) 1-electron donor.
- (b) What is metal cluster? Discuss about their classification. 1+2=3
- (c) Outline the PSEP theory.
- (d) Give one preparation of sodium nitroprusside. Discuss briefly about its structure.

- **5.** Answer any *three* questions : 3×3=9
 - (a) What do you mean by an error? How are they classified? 1+2=3
 - (b) Discuss the choice of indicator in acid-base titrations.
 - (c) Discuss the structural change in diphenylamine indicator which is used in the titration of Fe²⁺ with potassium dichromate in acidic medium.
 - (d) Write a short note on adsorption indicator.
- 6. Discuss the uses of the following reagents in inorganic analysis (any three): 2×3=6
 - (a) 1-nitroso-2-naphthol
 - (b) Cupferron
 - (c) Oxine
 - (d) Dithizone
 - (e) Magneson

* * *