5 SEM TDC CHM M 7 (N/O)

2018

(November)

CHEMISTRY

(Major)

Course: 507

(Symmetry and Quantum Chemistry)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 48

Pass Marks: 14

Time: 2 hours

1. Select the correct answer from the following:

1×5=5

(a) The wave function which is acceptable in quantum mechanics is

(i) $\psi = x$

(ii) $\psi = x^2$

(iii) $\psi = \sin x$

(iv) $\psi = e^x$

- (b) The de Broglie wavelength of an electron moving with $\frac{1}{10}$ th of the velocity of light is
 - (i) $2 \cdot 42 \times 10^{-11}$ m
 - (ii) 2.42×10^{-11} cm
 - (iii) 2·42×10⁻¹⁰ m
 - (iv) None of the above
- (c) Quantum mechanical operator for momentum is
 - (i) $\frac{h}{2\pi i}\nabla$

(ii) $-\frac{h^2}{8\pi^2 m} \nabla^2$

(iii) $\frac{h}{2\pi i}$

- (iv) $\frac{\hbar}{2i}\nabla$
- (d) Quantum mechanical operator must be
 - (i) linear
 - (ii) Hermitian
 - (iii) Neither (i) nor (ii)
 - (iv) Both (i) and (ii)
- (e) The point group of [PtCl₄]²⁻ is
 - (i) D_{4h}

(ii) D_{3h}

(iii) D_{5h}

(iv) C4v

- 2. Answer any five questions from the following: 2×5=10
 - (a) Taking NH_3 as an example of trigonal pyramid molecule, discuss symmetry operations in $C_{3\nu}$ point group molecules.
 - (b) What are the main differences between VBT and MOT?
 - (c) Show that the function $\psi = \cos ax \cos by \cos cz$ is an eigenfunction of the Laplacian operator. Find the corresponding eigenvalue.
 - (d) Show that the length of a onedimensional box is an integral multiple of $\lambda/2$, where λ is the wavelength associated with the particle wave.
 - (e) Calculate the expectation value of p_x (linear momentum along x direction) for a particle in a one-dimensional box of length a.
 - (f) What do you understand by the terms 'eigenfunction' and 'eigenvalue'?

UNIT-I

- **3.** Answer any *three* questions from the following: 3×3=9
 - (a) Set up the group multiplication table for $C_{2\nu}$ point group.
 - (b) Write down the symmetry elements and point groups of the following: 1×3=3
 - (i) CO2
 - (ii) BF₃
 - (iii) BrF5
 - (c) State, without any derivation, the five rules about irreducible representation of a group and their characters by making use of 'great orthogonality theorem'.
 - (d) Write down the matrix representation for σ operation taking x, y, z as bases.

UNIT-II

Answer any two questions:

9×2=18

4. (a) (i) The functions given below are defined in the interval x = -a and x = +a as follows:

$$F_1(x) = N_1(a^2 - x^2)$$

$$F_2(x) = N_2 x (a^2 - x^2)$$

Assuming the value of the function to be zero for x < -a and x > +a, calculate the values of normalization constants N_1 and N_2 . 3+3=6

- (ii) Show that the functions $F_1(x)$ and $F_2(x)$ in the above problem are orthogonal.
- (b) (i) Solve Schrödinger's wave equation for a particle moving freely in a three-dimensional cubic box. Find the eigenfunction and energy.

4+1+1=6

3

3

- (ii) Determine the energy required for a transition from $n_x = n_y = n_z = 1$ to $n_x = n_y = 1$, $n_z = 2$ state for an electron in a cubic hole of a crystal with 10^{-8} cm edge-length.
- (c) (i) The distance between the atoms of a diatomic molecule is r and its reduced mass is μ. If its angular momentum is L and moment of inertia is I, then prove that

kinetic energy, $T = \frac{L^2}{2\mu I^2}$

(ii) Calculate the probability density for a 1s-electron at the nucleus of H-atom. Given

$$\psi_{1s} = \left(\frac{z^3}{\pi a_0^3}\right)^{\frac{1}{2}} e^{-zr/a_0}$$

$$a_0 = 0.529 \text{ Å}$$

(iii) Set up Schrödinger's wave equation for a simple harmonic oscillator.

"The zero-point energy of a simple harmonic oscillator cannot be zero."

Explain. 2+1=3

UNIT-III

- 5. (a) Taking suitable trial wave function for hydrogen molecule ion, obtain the expressions for the possible energies and the corresponding eigenfunctions.
 - (b) Explain with a diagram, the formation of bonding and anti-bonding molecular orbitals on the basis of LCAO approximation.

Or

Draw the MO configuration of NO molecule and predict its magnetic character.

2

4

2

(Old Course)

Full Marks: 48 Pass Marks: 19

Time: 3 hours

1. Select the correct answer from the following:

 $1 \times 5 = 5$

- Eigenvalues of a Hermitian operator are (a)
 - (i) real
 - (ii) complex
 - (iii) imaginary
 - (iv) both real and imaginary
- The quantum mechanical operator for (b) kinetic energy is

(i)
$$-\frac{h^2}{8\pi^2 m} \nabla^2$$
 (ii) $\frac{h}{2\pi i} \nabla$

(ii)
$$\frac{h}{2\pi i}\nabla$$

(iii)
$$\frac{h}{2\pi i} \cdot \frac{d}{dx}$$
 (iv) V

The wave function w satisfies the (c) equation

$$\int_{-\infty}^{+\infty} \psi^* \psi \, dx = 0$$

The function is said to be

- (i) normalized
- (ii) diagonal
- (iii) orthogonal
- (iv) All of the above

(d)	The	number	of	nodes	in	the	radial	1000
			distribution					
	s-orbital of any energy level is equal to							

(i) $\frac{n}{2}$

(ii) n−1

(iii) n-2

(iv) n-l-1

(e) The point group of NH3 is

(i) T_d

(ii) D_{2h}

(iii) Con

(iv) C3"

2. Answer any five questions from the following: 2×5=10

- (a) What do you understand by eigenfunctions and eigenvalues?
- (b) Differentiate between linear and non-linear operators with examples.
- (c) What are the main differences between VBT and MOT?
- (d) Show that e^{-ax^2} (a is a constant) is an eigenfunction of operator $\frac{1}{x} \cdot \frac{d}{dx}$. Find the eigenvalue.

- (e) Write a short note on crystallographic point group.
- (f) Determine the degree of degeneracy of the energy levels $\frac{14h^2}{8ma^2}$ of a particle in a three-dimensional box.

UNIT-I

- 3. Answer any three questions from the following: 3×3=9
 - (a) Write the symmetry elements and point groups of the following: 1×3=3
 - (i) H₂O
 - (ii) BCl₃
 - (iii) CO2
 - (b) State, without any derivation, the five rules about irreducible representation of a group and their characters by making use of 'great orthogonality theorem'.
 - (c) Give the reducible representation of character table for $C_{2\nu}$ point group.
 - (d) Write down the matrix representation for σ operation taking x, y, z as bases.

UNIT-II

Answer	any	two	questions	:
	9	No. of Concession	The second secon	85

9×2=18

4. (a) (i) Deduce Schrödinger's wave equation on the basis of classical wave concept.

4

- (ii) What is photoelectric effect? State two significant experimental observations concerning photoelectric effect. Explain the observations with the help of classical theory or any other theory of light.

 1+2+2=5
- (b) (i) Solve Schrödinger's wave equation for a particle in a one-dimensional box and find its energy. Why is the value n = 0 of the quantum number not permitted? 4+1=5
 - (ii) A particle of mass m is confined in a one-dimensional box of length a. Calculate the probability of finding the particle in the region $0 \le x \le \frac{a}{3}$. What is the limiting probability when $n \to \infty$?
- (c) (i) Write a short note on radial and angular part of wave function.

3

(ii) Calculate the probability density for a 1s-electron at the nucleus of H-atom. Given

$$\psi_{1s} = \left(\frac{z^3}{\pi a_0^3}\right)^{\frac{1}{2}} e^{-zr/a_0}$$

$$a_0 = 0.529 \text{ Å}$$
3

(iii) Set up Schrödinger's wave equation for a simple harmonic oscillator.

"The zero point energy of a simple harmonic oscillator cannot be zero."

Explain.

2+1=3

UNIT-III

- 5. (a) Taking suitable trial wave function for hydrogen · molecule ion, obtain the expressions for the possible energies and the corresponding eigenfunctions.
 - (b) Draw the MO configuration of NO molecule and predict its magnetic character.

Or

Explain why H_2 molecule is more stable than H_2^+ ion.

* * *

4

2

2