5 SEM TDC CHM M 1 (N/O)

2017

(November)

CHEMISTRY

(Major)

Course: 501

(Physical Chemistry—II)

(New Course)

Full Marks: 48
Pass Marks: 14

Time: 2 hours

The figures in the margin indicate full marks for the questions

1. Select the correct answer:

 $1 \times 5 = 5$

(a) The equation for rate constant, is

$$k = Ae^{-E_a/RT}$$

The chemical reaction will proceed more rapidly, if there is a decrease in

- (i) k
- (ii) A
- (iii) T
- (iv) E_a

- (b) The vapour pressure of a dilute aqueous solution of glucose is 740 mm of mercury at 373 K. The mole fraction of the solute is
 - (i) $\frac{1}{20}$
 - (ii) $\frac{1}{38}$
 - (iii) $\frac{1}{76}$
 - $(iv) \frac{1}{740}$
- (c) The function of alum used for the purification of water is to
 - (i) coagulate the sol particles
 - (ii) disperse the sol particles
 - (iii) emulsify the sol particles
 - (iv) absorb the sol particles
- (d) In gas masks, the poisonous gases are adsorbed by activated charcoal. The activated charcoal acts as
 - (i) adsorbate
 - (ii) adsorbent
 - (iii) catalyst
 - (iv) All of the above

(e) 0.01 M solution each of urea, common salt and sodium sulphate are taken, the ratio of depressions in freezing point of these solutions is

(i) 1:1:1

(ii) 1:2:1

(iii) 1:2:3

(iv) 2:2:3

2. Answer any five questions:

 $2 \times 5 = 10$

- (a) Describe one method for determining the order of a reaction.
- (b) When a gas is adsorbed by a solid sample, then both the enthalpy and entropy of the system decrease. Explain.
- (c) State and explain Nernst distribution law.
- (d) The rate constant for a reaction of zero order with respect to reactant A is $0.0030 \text{ mol } 1^{-1} \text{ s}^{-1}$. How long will it take for the initial concentration of A to fall from 0.10 M to 0.075 M?
- (e) Explain what is observed when an electrolyte NaCl is added to hydrated ferric oxide sol.

- (f) Describe the cleansing action of soaps on the basis of micelle formation.
- (g) What is chemical potential? Mention its significance.

UNIT-I

3. Answer any two questions:

6×2=12

5

1

1

(a) Deduce the integrated rate expression of the following second-order reaction:

$$A + B \longrightarrow \text{products}$$

Prove that when either A or B is taken in excess, then this second-order reaction shows first-order kinetics.

4+2=6

- (b) (i) Describe Lindemann's theory of unimolecular gas phase reaction.
 - (ii) Give one example of zero-order reaction.
- (c) (i) What is steady-state approximation?
 - (ii) For the reaction 2NO + Cl₂ = 2NOCl, following mechanism has been proposed

$$NO + Cl_2 \xrightarrow{k_1} NOCl_2$$

$$NO + NOCl_2 \xrightarrow{k_2} 2NOCl$$

assuming k_2 [NO] $\ll k_{-1}$.

Show that the overall rate of the reaction is given by $k [NO]^2 [Cl_2]$

5

		UNIT—II	
4.	Ansv	ver any one question:	5
	(a)	What is solvent extraction? Show that multistep extraction is more economical than single-step extraction.	-=5
	(b)	(i) Discuss how the elevation of boiling point of a solution of non-volatile, non-electrolyte solute is related to the molecular mass of the solute.	3
		(ii) Determine the number of mol of $CaCl_2$ ($i = 2.47$) dissolved in 2.5 litre of water such that its osmotic pressure is 0.75 atm at	2
5.	Ans	27 °C. UNIT—III wer any two questions: 3½×	
	(a)	State and explain Le Chatelier's principle.	3½
	(b)	Derive Duhem-Margules equation.	31/2
	(c)	(i) What is fugacity? Write its physical significance. 1+1½	
3P/	395	(Turn O	ver)

		following equilibrium:	1
		N_2 (g) + O_2 (g) \rightleftharpoons 2NO (g)	
		UNIT—IV	
6. An	swer a	any one question :	4
(a)	adso	te the postulates of Langmuin orption isotherm. Also write four ortant applications of adsorption. 2	
(b)	the	ive Gibbs' adsorption equation for adsorption of a solute on the surface liquid.	
		Unit—V	
7. An	swer a	any <i>one</i> question :	5
(a)	(i)	What is peptization? Explain with example.	n 2
	(ii)	Write the differences between lyophilic sol and lyophobic sol.	n 3
(b)) (i)	Describe any one method for preparing a colloidal solution.	r
	(ii)	What is critical micell concentration? Mention tw	
		properties of the ionic surfactar solution which undergo abrup	nt
8P/395	suff y	(Conti	

(Continued)

(Old Course)

Full Marks: 48
Pass Marks: 19

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Select the correct answer:

 $1 \times 5 = 5$

(a) The equation for rate constant, is $k = Ae^{-E_a/RT}$

The chemical reaction will proceed more rapidly, if there is a decrease in

- (i) k
- (ii) A
- (iii) T
- (iv) E_a
- (b) An aqueous soltuion of Na₂CO₃ is
 - (i) basic
 - (ii) acidic
 - (iii) neutral
 - (iv) unpredictable

- (c) The function of alum used for the purification of water is to
 - (i) coagulate the sol particles
 - (ii) disperse the sol particles
 - (iii) emulsify the sol particles
 - (iv) absorb the sol particles
- (d) In gas masks, the poisonous gases are adsorbed by activated charcoal. The activated charcoal acts as
 - (i) adsorbate
 - (ii) adsorbent
 - (iii) catalyst
 - (iv) All of the above
- (e) 0.01 M solution each of urea, common salt and sodium sulphate are taken, the ratio of depressions in freezing point of these solutions is
 - (i) 1:1:1
 - (ii) 1:2:1
 - (iii) 1:2:3
 - (iv) 2:2:3

2. Answer any five questions:

 $2 \times 5 = 10$

- (a) Describe one method for determining the order of a reaction.
- (b) When a gas is adsorbed by a solid sample, then both the enthalpy and entropy of the system decrease. Explain.
- (c) State and explain Nernst distribution law.
- (d) The rate constant for a reaction of zero order with respect to reactant A is 0.0030 mol 1⁻¹ s⁻¹. How long will it take for the initial concentration of A to fall from 0.10 M to 0.075 M?
- (e) Explain what is observed when an electrolyte NaCl is added to hydrated ferric oxide sol.
- (f) Describe the cleansing action of soaps on the basis of micelle formation.
- (g) Deduce the relationsip between solubility and solubility product of a sparingly soluble salt.

UNIT-I

3. Answer any two questions:

6×2=12

(a) Deduce the integrated rate expression of the following second-order reaction:

 $A + B \longrightarrow \text{products}$

Prove that when either A or B is taken in

		excess, then this second-order reactionshows first-order kinetics.						
	(b)	(i)	Describe Lindemann's theory of unimolecular gas phase reaction.	5				
		(ii)	Give one example of zero-order reaction.	1				
	(c)	(i)	Define order and molecularity of a reaction. Write one difference between these two. 2+1	-2				
		(ii)	ONE OF ACTION OF A PARTY OF A PAR	3				
	Unit—II							
4.	Answer any one question:							
	(a)	mu	at is solvent extraction? Show that Itistep extraction is more economical n single-step extraction. 1+4	1= 5				
	(b)	(i)	Discuss how the elevation of boiling point of a solution of non-volatile, non-electrolyte solute is related to the molecular mass of the solute.	3				
		(ii)	Determine the no. of mol of $CaCl_2$ ($i = 2.47$) dissolved in 2.5 litre of water such that its osmotic pressure is 0.75 atm at					
			27 °C.	2				

(Continued)

8P/395

UNIT-III

(a) Derive an expression for the pH of an aqueous solution of a salt of weak acid

5. Answer any two questions :

		and s	strong base.	31/
	(b)	50%	Distinguish solubility product from onic product.	1
		m	0 ml of $6.0 \times 10^{-3} M \text{ CaCl}_2$ is nixed with 30 ml of $0.04 M \text{ NaF}$.	
	uller	K	Vill precipitation of CaF_2 occur? C_{sp} for CaF_2 is 4.0×10^{-11} .	21/2
	(c)		That are buffer solutions? Classify nem giving examples. 1+	1=2
		ac Ni	xplain why NH ₄ Cl should be dded to the solution before adding H ₄ OH solution for Gr-IIIA	
		· pı	recipitation. UNIT—IV	11/
6.	Ansv	ver any	y one question :	4
	(a)	adsorp	the postulates of Langmuir ption isotherm. Also write four tant applications of adsorption.	

2+2=4

31/2×2=7

	(b)	Der	ive Gibbs' a	dsorption	equation	for
		the	adsorption of	f a solute o	on the surf	ace
		of a	liquid.			4
			Uni	T—V		
			and the state of the			
7.	Ans	wer	any one que	stion :		5
	(a)	(i)	What is per	ptization?	Explain w	vith
			example.			2
		(ii)	Write the	difference	ces between	een
			lyophilic sol	and lyop	hobic sol.	3
	(b)	(i)	Describe a	inv one	method	for
		1	preparing a			2
		(ii)	What is	critic	al mic	elle
	Allea		concentration		anw un	two
			properties of	of the ion		
			solution w	hich und	lergo abr	upt
			change at C			+1+1=3
		e ad			adde	1.10