5 SEM TDC CHM M 5 (N/O)

2017

(November)

CHEMISTRY

(Major)

Course: 505

(Organic Chemistry)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 48

Pass Marks: 14

Time: 2 hours

1. Select the correct answer from the following:

1×5=5

- (a) In the ground state, HOMO of 1,3butadiene is symmetric with respect to
 - (i) mirror plane (m)
 - (ii) C_2 -axis
 - (iii) both mirror plane and C2-axis
 - (iv) None of the above

- (b) Epimeric carbohydrates differ through their
 - (i) functional group
 - (ii) ring size
 - (iii) configuration at α-C atom
 - (iv) None of the above
- (c) In the double helix of DNA, guanine of one coil involves pairing with cytosine of the other through
 - (i) one H bond
 - (ii) two H bonds
 - (iii) three H bonds
 - (iv) Not through H-bond
- (d) Chloramphenicol is an example of
 - (i) broad spectrum antibiotic
 - (ii) narrow spectrum antibiotic
 - (iii) polypeptide
 - (iv) lincomycin
- (e) The nature of the -OH group in the α -terpineol is
 - (i) primary alcohol
 - (ii) secondary alcohol
 - (iii) tertiary alcohol
 - (iv) aryl alcohol

UNIT-I

2. (a) Draw the molecular orbitals of 1,3-butadiene and indicate which is HOMO and LUMO in the ground state.

2

2

(b) Complete the following reaction and suggest the mechanism:

$$\begin{array}{c}
\text{OCH}_2\text{CH} = \text{CH}_2 \\
\longrightarrow ?
\end{array}$$

$$\begin{array}{c}
\text{Or}
\end{array}$$

In the following reaction, predict whether conrotatory or disrotatory motion will take place under the mentioned condition against the compound:

$$CH_3$$
 $CH_3 \xrightarrow{hv} ?$

(c) With the help of FMO approach, show that [4+2] cycloaddition is thermally allowed but photochemically forbidden.

11/2+11/2=3

1 2

UNIT-II

3. (a) Draw the conformational structure of β-D-glucopyranose.

(b) Convert D-glucose into D-fructose.

(Turn Over)

8P/397

Or

Write in brief about the mutarotation of D-glucose.

- (c) Establish the cyclic structure of D-(+)-glucose.
- (d) Determine whether D-fructose is in a furanose or a pyranose form from the following evidences:

D-fructose
$$A \xrightarrow{\text{MeOH/HCl}} A \xrightarrow{\text{Excess Me}_2\text{SO}_4} B \rightarrow$$

$$C_6\text{H}_{12}\text{O}_6$$
NaOH

 $\xrightarrow{\text{dil. HCl}} C \xrightarrow{\text{dil. HNO}_3} D \xrightarrow{\text{KMnO}_4} \delta \text{-lactose}$

Oxidation Arabinotrimethoxy glutaric acid

Or

How would you establish that the configurations of C_3 , C_4 and C_5 atoms of D-glucose and D-mannose are the same?

(e) D-glucose reacts with HCN but not with NaHSO₃. Explain.

UNIT-III

- 4. (a) Distinguish between nucleotide and nucleoside.
 - (b) Synthesize uracil from urea.

(Continued)

2

2

2

3

Or

Discuss briefly the mechanism of enzymatic action.

(c) Explain the stereospecificity of enzyme with the help of a suitable example.

Define coenzyme. 2+1=3

Or

Define genetic code. Write the important structural and functional differences between DNA and RNA. 1+2=3

(d) Discuss briefly about the replication of DNA.

UNIT-IV

- 5. (a) Write in brief about the medicinal importance of azadirachtin present in neem.
 - (b) Draw the structure of vitamin C and write about its medicinal importance.

Or

Synthesize paracetamol from *p*-nitrophenol.

(c) Draw the structure of chloramphenicol and write in brief about its clinical properties. 1+2=3

2

2

Or

Write down the synthesis of antimalarial drug chloroquine.

2

3

Starting from acetanilide, write down (d) the synthesis of sulphanilamide.

Or

Write down the green synthesis of ibuprofen.

UNIT-V

Explain about special isoprene rule. (a) 6.

2

2

2

In citral, one of the double bonds is at (b) α, β-position with respect to aldehydic group. Explain.

How will you synthesize citral from (c) 6-methyl-hept-5-en-2-one?

Or

How can you synthesize α-terpineol starting from p-toluic acid?

Write down the structure of cis- and (d) trans-isomer of citral.

(Old Course)

Full Marks: 48
Pass Marks: 19

Time: 3 hours

- 1. (a) Select the correct answer from the following: 1×3=3
 - (i) The photochemical electrocyclic reaction of butadiene to cyclobutene occurs through
 - HOMO (ψ₂) having C₂-axis of symmetry with conrotatory movement of the terminal atoms
 - (2) bonding (ψ₁) having σ-plane with conrotatory movement of the terminal atoms
 - (3) LUMO (ψ₃) having σ-plane with disrotatory movement of the terminal atoms
 - (4) antibonding (ψ_4^*) having C_2 -axis of symmetry with conrotatory movement of the terminal atoms
 - (ii) DNA multiplication is called
 - (1) translation
 - (2) transduction
 - (3) transcription
 - (4) replication

- (iii) Ribose and 2-deoxyribose can be differentiated by
 - (1) Fehling's reagent
 - (2) Osazone formation
 - (3) Tollens' reagent
 - (4) Barfoed's reagent
- (b) Draw the structure of curcumin. Give one important use of it.
- (c) Which diene and dienophile would you employ to synthesize the following compound?

UNIT-I

Answer any one question

2. (a) Draw the π -molecular orbitals of 1,3-butadiene. Identify the HOMO and LUMO and find out their symmetry elements. $1+\frac{1}{2}+\frac{1}{2}=2$

8P/397

1

(b) Predict the stereochemical products obtained in the following reactions:

 $1 \times 2 = 2$

2

2

3

(i)
$$HCH_3 \xrightarrow{\Delta} ?$$

- (c) How can you convert trans-5,6-dimethyl-1,3-cyclohexadiene into its cisisomer?
- (d) What is sigmatropic rearrangement? 1
- 3. (a) What are suprafacial-sigmatropic shift and antarafacial-sigmatropic shift? Explain the facts with [1, 5] sigmatropic rearrangement reaction(s).
 - (b) With the help of FMO approach, show that [4+2] cycloaddition is thermally allowed but [2+2] cycloaddition is thermally forbidden.
 - (c) Complete the following reaction and suggest the mechanism:

UNIT-II

Answer any one question

 (a) Sketch the conformational structure of α-D-mannopyranose.

1

(b) What products do you expect when methyl α-D-mannopyranose is subsequently subjected to HIO₄ oxidation, Br₂/H₂O oxidation, strontium salt formation and hydrolysis with dil. HCl?

3

(c) Establish the cyclic structure of D-glucose.

3

(d) Complete the following reaction:

2

D-Glucose $\xrightarrow{3\text{PhNHNH}_2}$ Osazone $\xrightarrow{\text{dil. HCl}}$ Osone

Zn/AcOH a Ketohexose

(e) What is epimerization? Explain it considering the conversion of D-glucose to D-mannose.

2

5. (a) The specific rotation of α -D-mannopyranose is +29·3° and that β -D-anomer is -17·0°. The specific rotation of the equilibrium mixture is +14·2°. Calculate the % composition of α - and β -anomers at equilibrium.

(b) Complete the following reactions:

11/2×2=3

3

(i) D-Fructose (open str)
$$\xrightarrow{\text{HCN}} \xrightarrow{\text{Ba(OH)}_2} \xrightarrow{\text{HI/red P}}$$

2-methyl hexanoic acid

- (ii) D-Fructose (open str) [O] → Glycolic acid
 - + Meso-tartaric acid + D-arabinotrihydroxy glutaric acid
 - (c) Explain that two C-2 epimeric aldose D-erythrose and D-threose give the same lower aldose by the Ruff degradation.
 - (d) What is mutarotation? Why does
 D-glucose show the phenomenon of
 mutarotation? 1+2=3

UNIT-III

Answer any one question

6. (a) Draw the structures of adenosine (aribonucleoside) and deoxycytidine (a deoxyribonucleoside). 1+1=2

	(b)	What is the difference between DNA and RNA on the basis of bases they contain?	1
	(c)	How would you synthesize uracil from urea and ethyl acrylate?	2
	(d)	What are complementary bases? Draw the structures to show H-bonding between adenine and thymine. 1+1=	2
	(e)	What are enzymes? Name two diseases caused due to the deficiency of enzymes.	2
7.	(a)	Draw the structure of the nucleotide of ATP.	1
	(b)	Synthesize guanine from guanidine by using Traube's synthesis.	2
	(c)	Discuss briefly the mechanism of enzymatic action.	2
	(d)	What is coenzyme? Give one example. $\frac{1}{2} + \frac{1}{2} = \frac{1}{2}$	=1
	(e)	How does DNA replicate? How is the process responsible for preservation of heredity? 1+2	=3

UNIT-IV

Answer any one question

- 8. (a) What are antacids? Give the structure of an antacid which may use in the treatment of peptic ulcer. 1+1=2
 - (b) Give the preparation of the following: 2×2=4
 - (i) Ibuprofen (by green method)
 - (ii) Sulphaguanidine from *p*-acetyl sulphanilyl chloride
 - (c) What are antipyretics and analgesics?

 Discuss the mode of action of antipyretics and analgesics. 1+1+1=3
- 9. (a) What are gram positive and gram negative bacteria? Give two examples for each. Draw the structure of an antibiotic which is active against certain gram positive and gram negative bacteria.

 1+1+1=3
 - (b) Using the following diester and aminoalkane, how would you synthesize an anti-malarial drug?

Diester

5-diethylamino 2-aminopentane

8P/397

(Turn Over)

(14)

dettol?

(i) What are the main constituents of

(ii) What is tincture of indine? What is

		(11)	its us	2 20	DESIGN S	rva Jan	W Si	
		(iii)	Synth	esize pa	racetan	nol.	1+1+	1=3
				Unit-	_V			
			adiam a		il malan	cord!		
			Answe	r any o	ne que	stion		
0.	(a)						citral.	
							isomers	
				atment			followed	
		23	rie fire		or air a	ciu ca	1+1+	1=3
	ON HOU	1	da. zyt	ilaug n	man a	su too		
	(b)					ize α-t	erpineol	
		1101	ii <i>p</i> -toi	uic acid	FA Q			2
	(c)	Cor	mplete	the follo	owing r	eaction	o:	2
	DATTE		100619	1) Zn	/Br—CH	COOEt	78	
6-M	ethyll	nept-	5-en-2-0	$ne \frac{1) Zn}{2) H^+}$			$\rightarrow (A)$	
	180	Ac ₂ C	$\stackrel{\circ}{\rightarrow} (B)$ -	Calcium	salt + Ca	alcium f	ormate	(C)
		-Ha	0 '		THE DELY	elisite hi	ITE:	(0)

11. (a) What are the analytical and synthetic

establish the structure of citral?

evidences which have been exploited to

4

(c)

10.

(b)	What happens when citral is condensed						
				resence of Ba			
				treatment			
	dil. H ₂ SO ₄	in	presen	ce of glycero	1?		

2

(c) Giving one example, state isoprene rule. 1

4 4 4