5 SEM TDC CHM M 7 (N/O)

2017

(November)

CHEMISTRY

(Major)

Course: 507

(Symmetry and Quantum Chemistry)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 48 Pass Marks: 14

Time: 2 hours

1. Select the correct answer from the following:

 $1 \times 5 = 5$

(a) The quantum mechanical operator for kinetic energy is

(i)
$$-\frac{h^2}{8\pi^2 m} \nabla^2$$
 (ii) $\frac{h}{2\pi i} \nabla$

(ii)
$$\frac{h}{2\pi i}\nabla$$

(iii)
$$\frac{h}{2\pi i} \frac{d}{dx}$$

- (b) A particle is moving in a 1-D box, N_n is the number of nodes in a state with quantum number n. The ratio of $N_{n=2}:N_{n=1}$ has a value
 - (i) 1
 - (ii) 2
 - (iii) 3
 - (iv) ∞
- The energy required to excite (to first (c) excited state) a particle of mass m confined in a length l is
 - (i) $\frac{3h^2}{8ml^2}$
 - (ii) $\frac{h^2}{8m^{12}}$
 - (iii) O
 - (iv) h^2
- (d) The eigenvalue of the function $\psi = 8e^{4x}$ for the operator $\frac{d^2}{dv^2}$ is

 - (i) 16 (ii) 32
 - (iii) 8
 - (iv) 4

- (e) The point group of NH3 is
 - (i) T_d
 - (ii) D_{2h}
 - (iii) C2v
 - (iv) C3"
- 2. Answer any *five* questions from the following: 2×5=10
 - (a) What is the matrix representation of rotation-reflection axis (S_n) in symmetry?
 - (b) Briefly describe Compton effect.
 - (c) Distinguish bonding molecular orbitals from antibonding molecular orbitals.
 - (d) Show that the functions $\psi_1 = \left(\frac{1}{2\pi}\right)^{\frac{1}{2}}$ and $\psi_2 = \left(\frac{1}{\pi}\right)^{\frac{1}{2}}\cos x$, in the interval x = 0 to $x = 2\pi$, are orthogonal to each other.
 - (e) Hermitian operators have real eigenvalues. Explain.
 - (f) Show that the energy levels in a simple harmonic oscillator are equally spaced.

8P/398

(Turn Over)

UNIT-I

- 3. Answer any three questions from the following: 3×3=9
 - (a) Write the symmetry elements and point groups of the following: 1×3=3
 - (i) CHCl₃
 - (ii) NH₃
 - (iii) PCl₅
 - (b) Construct the character table for $C_{2\nu}$ point group.
 - (c) What are dihedral planes of symmetry?

 Explain with example. 2+1=3
 - (d) Distinguish Abelian groups from non-Abelian groups by taking a suitable example.

UNIT-II

Answer any two questions:

9×2=18

3

4. (a) A wave function is described by $\psi(\theta) = \sin \theta$, where θ can change continuously from 0 to 2π . Show whether it is normalized or not. If it is not, then find the normalizing factor.

2+2=4

(b)	Show that $\psi = \sin(k_1 x) \sin(k_2 y) \sin(k_3 z)$			
	is an eigenfunction of ∇^2 . What is	the		
	eigenvalue?	2+1=3		

- (c) Verify that the operator ∇^2 is linear. 2
- 5. (a) Solve Schrödinger's wave equation for a particle moving freely in a one-dimensional box. Find the eigenfunction and energy also.
 - (b) A particle of mass m is confined in a one-dimensional box of length a. Calculate the probability of finding the particle in the region $0 \le x \le \frac{a}{4}$. What is the limiting probability when $n \to \infty$?
- 6. (a) Define rigid rotator. Write the Schrödinger's wave equation for this system and separate the variables. 1+4=5
 - (b) Sketch the variation of radial probability density against the distance from the nucleus for 2s state for hydrogen atom.

(c) Determine the degree of degeneracy of the energy level $\frac{6h^2}{8ma^2}$ of a particle in a cubical box.

2

UNIT-III

7. (a) Explain the valence bond treatment for H₂ molecule.

4

Or

Compare the MO and VB treatment of hydrogen molecule in the ground state.

(b) Write the MO configuration of CN⁻ ion and predict its magnetic character.

(Old Course)

Full Marks: 48
Pass Marks: 19

Time: 3 hours

Select the correct answer from the following:

 $1 \times 5 = 5$

(a) A wave function ψ satisfies the equation

$$\int_{+\infty}^{\infty} \psi^* \psi \, dx = 1$$

The function is said to be

- (i) orthogonal
- (ii) diagonal
- (iii) normalized
- (iv) None of the above
- (b) The point group of H₂O is
 - (i) T_d

(ii) D_{2h}

(iii) C2v

- (iv) C_{3v}
- (c) The eigenvalue of the function $\psi = e^{4x}$ for the operator $\frac{d^2}{dx^2}$ is
 - (i) 16

(ii) 32

(iii) 8

(iv) 4

- (d). The bond order of O_2^{2-} is
 - (i) 3·0
 - (ii) 2·5
 - (iii) 2·0
 - (iv) 1.0
- (e) The lowest energy of a quantum mechanical harmonic oscillator is $\frac{1}{2}hv$.

It is referred to as

- (i) ground-state energy
- (ii) zero-point energy
- (iii) vibrational energy
- (iv) All of the above
- 2. Answer any five questions from the following: 2×5=10
 - (a) Explain rotation-reflect axis in symmetry.
 - (b) Calculate the zero-point vibrational energy of a one-particle, one-dimensional system if $E_v = \left(v + \frac{1}{2}\right)hv$.
 - (c) Explain why wave theory fails to explain black-body radiation.

- (d) What do you understand by eigenfunction and eigenvalue?
- (e) Determine the degree of degeneracy of the level $\frac{17h^2}{8ma^2}$ of a particle in a cubical box.
- (f) What are symmetric and antisymmetric wave functions?

UNIT-I

- 3. Answer any three questions from the following: 3×3=9
 - (a) What is multiplication table? Construct the multiplication table for C_{2v} point group.
 - (b) Write the symmetry elements and point groups of the following: 1×3=3
 - (i) CHCl₃
 - (ii) NH₃
 - (iii) PC15
 - (c) What are dihedral planes of symmetry?
 Explain with example. 2+1=3

(d) Write a short note on any one of the

		ionowing .	3
		(i) Character table	
•		(ii) Reducible and irreducible representations	
		(iii) Great orthogonality theorem	
		UNIT—II	
Ans	wer a	any <i>two</i> questions : 9×2=1	.8
4.	(a)	$\psi(\theta) = \sin \theta$, where θ can change	
		continuously from 0 to 2π . Show whether it is normalized or not. If it is not, then find the normalizing constant.	
		that tailed menually from at tacks 2+2=	4
	(b)	Show that $\psi = \sin(k_1 x) \sin(k_2 y) \sin(k_2 z)$	

is an eigenfunction of ∇^2 . What is the

Differentiate between linear and non-

5. (a) ψ_i and ψ_j represent the wave functions corresponding to two different states of a particle in a box. Show that they are orthogonal to each other.

eigenvalue?

linear operators.

3

2

2+1=3

3

(c)

- (b) Sketch ψ and ψ^2 for the states n = 3 and n = 4 of a particle in a one-dimensional box.
- (c) An oxygen molecule is confined in a cubical box of volume $1.00 \,\mathrm{m}^3$. Assuming the average energy of the molecule is $\frac{3}{2}kT$, where k is the Boltzmann constant, find the value of $n = (n_x^2 + n_y^2 + n_z^2)$ for the molecule at $T = 300 \,\mathrm{K}$.
- 6. (a) Write down Schrödinger's wave equation for H-atom in polar coordinates.
 - (b) The distance between the atoms of a diatomic molecule is r and its reduced mass is μ . If the angular momentum is L and moment of inertia is I, then prove that kinetic energy, $T = \frac{L^2}{2\mu I^2}$.
 - (c) Calculate the most probable distance, r_{mp} of the electron from the nucleus in the ground state of hydrogen atom, given that the normalized ground-state wave function is

$$\psi_{1s} = \frac{1}{\sqrt{\pi}a_0^{3/2}} (\exp)^{(-r/a_0)}$$

3

3

2

UNIT-III

7. (a) Explain the valence bond treatment for H₂ molecule.

4

Or

Compare the MO and VB treatment of hydrogen molecule in the ground state.

(b) Write down the MO configuration of CO molecule. Determine its bond order and predict magnetic character.

2

* * *