IN COUNTY OF THE OF CHEE phy. Total No. of Printed Pages-15

5 SEM TDC CHM M 1 (N/O)

(he = 501,503,505,

2016 6= 501

(November) Bof = 501,505, 50

CHEMISTRY 6 = 501, 502, 503

(Major) Stat = 501, 502, 50

Course: 501 6 = 501

200 2501,503,5 (Physical Chemistry—II) 6 250 1

(New Course) Geo 2501,503,

(92501 Full Marks: 48 Pass Marks: 14 Pty = 501,502

Time: 2 hours

The figures in the margin indicate full marks for the questions

Select the correct answer:

 $1 \times 5 = 5$

The rate constant for the reaction (a) $2N_2O_5 \rightarrow 4NO_2 + O_2$ is 3×10^{-5} s⁻¹. If the rate is 2.4×10^{-5} mol 1^{-1} s⁻¹, the concentration of N₂O₅ (in mol 1⁻¹) is

(i) 1·4

(ii) 1·2

(iii) 0·8

(iv) 0.04

- (b) Each substance in a given state has a tendency to escape from that state and this escaping tendency is called
 - (i) spontaneity
 - (ii) Gibbs free energy
 - (iii) fugacity
 - (iv) activity
- (c) Which of the following will have the highest coagulating power for As₂S₃ colloid?
 - (i) PO_4^{3-}
 - (ii) SO₄²⁻
 - (iii) A13+
 - (iv) Na+

- (d) The pair of the solutions which can be expected to be isotonic at the same temperature is
 - (i) 0.1 M urea and 0.1 M CaCl₂
 - (ii) 0.1 M Ca(NO3)2 and 0.1 M K2SO4
 - (iii) 0.1 M NaCl and 0.1 M Na2SO4
 - (iv) 0.1 M glucose and 0.2 M MgCl2
- (e) In an adsorption process, unimolecular layer is formed. It is
 - (i) physical adsorption
 - (ii) chemical adsorption
 - (iii) ion-exchange
 - (iv) chromatographic analysis
- 2. Answer any five questions:

 $2 \times 5 = 10$

- (a) Prove that the half-life period of a firstorder reaction is independent of the initial concentration of the reactant.
- (b) State and explain Le Chatelier's principle.

- (c) What is Henry's law? Describe it.
- (d) In the reduction of nitric oxide, 50% of reaction was completed in 108 seconds when initial pressure was 336 mm Hg and in 147 seconds when initial pressure was 288 mm Hg. Find the order of the reaction.
- (e) Describe Schultz-Hardy rule.
- (f) Mention four important uses of adsorption phenomenon.
- (g) 5 g of a substance of molar mass 200 is dissolved in 50 g solvent. The molar mass and vapour pressure of the solvent are 60 and 40 cm respectively. Find the vapour pressure of the solution.

UNIT-I

3. Answer any two questions:

6×2=12

(a) Give one example of consecutive reaction. Discuss the kinetics of first-order consecutive reaction

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C$$

Depict graphically the concentration of A, B and C with time. 1+4+1=6

	(b)	(i)	Derive the integrated rate expression for the reaction	
			$2A \rightarrow \text{products}.$	3
		i tiar	place . Frauether a adsorption	
		(ii)	Deduce the expression for half-life period of such a reaction.	2
			a signment of aldienogers	4
		(iii)	Give an example of such type of reaction.	1
			Write any nan-differentian between	
	(c)	(i)	Discuss any one method of	
			determining the order of a reaction.	3
			Discuss the effect of temperature	
			on the rate of a chemical reaction.	3
			Unit—II a trandamos	
1.	Ansv	ver :	any <i>one</i> question :	5
	(a)	(i)	Deduce the relation between	
			osmotic pressure and vapour pressure lowering when a	
			non-volatile solute is dissolved in a	
			solvent.	3
		(ii)	Calculate the value of van't Hoff's	
			factor of potassium ferricyanide	
			solution when it is 50% dissociated.	2

(b)	(i)	State Nernst distribution law. How		
vetion		is the law modified when the solute		
		undergoes association in one of the		
		solvents?	31/2	

(ii) What thermodynamic function is responsible for osmosis and how?

UNIT—III

Answer any two questions:

31/2×2=7

- (a) Explain the term 'chemical potential'. Derive Gibbs-Duhem equation for twocomponent system. 1+21/2=31/2
- Discuss the effects of temperature and (b) pressure on chemical potential. 31/2
- (c) Derive an expression for the change of Gibbs potential for the following gaseous reaction

 $aA + bB + \cdots \rightleftharpoons cC + dD$

31/2

	example, the role of the cutulatier
6.	Answer any one question :
	(a) Explain Freundlich's adsorption isotherm. In what respect Langmuir's isotherm is superior to Freundlich's adsorption isotherm? 3+1=
	(b) (i) Write any two differences between physical adsorption and chemical adsorption.
	(ii) Discuss the important factors which affect the adsorption of a gas on a solid adsorbent.
	UNIT—V
7	. Answer any one question :
	(a) (i) Discuss the origin of charges on colloidal particles.

(ii) Define zeta potential.

coagulation.

(iii) Discuss the mechanism

of

1

3

5

2

1

(b) (i) What are emulsions? Discuss giving example, the role of the emulsifier in the preparation of an emulsion.

1+2=3

(ii) Explain what will happen if a colloidal solution of Fe(OH)₃ is mixed with a colloidal solution of As₂S₃.

a to collegeable set make deline of a

(Old Course)

Full Marks: 48
Pass Marks: 19

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Select the correct answer:

1×5=5

- (a) The rate constant for the reaction $2N_2O_5 \rightarrow 4NO_2 + O_2$ is $3\times 10^{-5}\,\mathrm{s}^{-1}$. If the rate is $2\cdot 4\times 10^{-5}\,\mathrm{mol}\,\mathrm{l}^{-1}\mathrm{s}^{-1}$, the concentration of N_2O_5 (in mol l^{-1}) is
 - (i) 1·4
 - (ii) 1·2
 - (iii) 0·8
 - (iv) 0.04
 - (b) NH₄OH is a weak base, but it becomes still weak in the aqueous solution of
 - (i) 0-1 M NH₄Cl
 - (ii) 0·1 M H₂SO₄
 - (iii) 0·1 M HCl
 - (iv) 0.1 M CH₃COOH

- (c) Which of the following will have the highest coagulating power for As₂S₃ colloid?
 - (i) PO₄³⁻
 - (ii) SO₄²⁻
 - (iii) A13+
 - (iv) Na+
- (d) The pair of the solutions which can be expected to be isotonic at the same temperature is
 - (i) 0.1 M urea and 0.1 M CaCl₂
 - (ii) $0.1 M \text{ Ca(NO}_3)_2$ and $0.1 M \text{ K}_2 \text{SO}_4$
 - (iii) 0·1 M NaCl and 0·1 M Na2SO4
 - (iv) 0.1 M glucose and 0.2 M MgCl₂
- (e) In an adsorption process, unimolecular layer is formed. It is
 - (i) physical adsorption
 - (ii) chemical adsorption
 - (iii) ion-exchange
 - (iv) chromatographic analysis

2. Answer any five questions:

 $2 \times 5 = 10$

- (a) Prove that the half-life period of a firstorder reaction is independent of the initial concentration of the reactant.
- (b) The solubility of $BaSO_4$ is $2 \cdot 33 \times 10^{-4} \text{ g ml}^{-1}$ at 20 °C. Calculate the solubility product of $BaSO_4$ assuming that the salt is completely ionized.
- (c) State and explain Henry's law.
- (d) In the reduction of nitric oxide, 50% of reaction was completed in 108 seconds when initial pressure was 336 mm Hg and in 147 seconds when initial pressure was 288 mm Hg. Find the order of the reaction.
- (e) Describe Schultz-Hardy rule.
- (f) Mention four important uses of adsorption phenomenon.
- (g) 5 g of a substance of molar mass 200 is dissolved in 50 g solvent. The molar mass and vapour pressure of the solvent are 60 and 40 cm respectively. Find the vapour pressure of the solution.

UNIT-I

3. Answer any two questions:

6×2=12

(a) Give one example of consecutive reaction. Discuss the kinetics of first-order consecutive reaction

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C$$

Depict graphically the concentrations of A, B and C with time. 1+4+1=6

(b) (i) Derive the integrated rate expression for the reaction $2A \rightarrow \text{products}$.

3

(ii) Deduce the expression for half-life period of such a reaction.

2

(iii) Give an example of such type of reaction.

1

(c) (i) Discuss any one method of determining the order of a reaction.

3

(ii) Discuss the effect of temperature on the rate of a chemical reaction.

UNIT-II

4. Answer any one question :

	(a)	(i)	Deduce the relation between	
	37644	Elil	osmotic pressure and vapour	
			pressure lowering when a	
			non-volatile solute is dissolved in a	
	•		solvent.	3
		(ii)	Calculate the value of van't Hoff's	.04
		tout	factor of potassium ferricyanide	
			solution when it is 50% dissociated.	2
			(sothern) is superior to Par-	
	(b)	(i)	State Nernst distribution law. How	
			is the law modified when the solute	
			undergoes association in one of the	31/2
			solvents? mozba Molayda	3 /2
		(ii)		
			responsible for osmosis and how?	11/2
			which affect the adsorption	
			UNIT—III	
5.	Ans	wer	any two questions: 3½×	<2=7
	(a)	Dei	rive an expression for the pH of an	
	1-7		aeous solution of salt of a strong acid	

(b) What is buffer solution? Derive an

expression for calculating the pH of a

and a weak base.

basic buffer solution.

1+21/2=31/2

31/2

	(c)	(i)	Find the relation between solubility and solubility product for As ₂ S ₃ .	11/2
		(ii)	and the state of the safety	2
			UNIT—IV	
6.	Ansv	ver	any one question :	4
	(a)	isot isot	olain Freundlich's adsorption herm. In what respect Langmuir's herm is superior to Freundlich's orption isotherm? 3+:	1=4
	(b)	(i)	Write any two differences between physical adsorption and chemical adsorption.	1
		(ii)	Discuss the important factors which affect the adsorption of a gas on a solid adsorbent.	3
			UNIT—V	3
7.	Answ	er a	any one question :	5
	(a)	(i)	Discuss the origin of charges on colloidal particles.	2
		(ii)	Define zeta potential.	1
		(iii)	Discuss the mechanism of coagulation.	2
P7/2	94.		(Continue	ed)

(Continued)

(i) What are emulsions? Discuss giving (b) example, the role of the emulsifier in the preparation of an emulsion. 1+2=3

(ii) Explain what will happen when a colloidal solution of Fe(OH)3 is mixed with a colloidal solution of As2S3.

2
