5 SEM TDC CHM M 5 (N/O)

2016

(November)

CHEMISTRY

(Major)

Course: 505

(Organic Chemistry)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 48
Pass Marks: 14

Time: 2 hours

- 1. (a) Select the correct answer of the following: 1×3=3
 - (i) Which of the following pairs give the same osazone?
 - (1) Sucrose, Fructose
 - (2) Mannose, Fructose
 - (3) Glucose, Galactose
 - (4) Maltose, Lactose

I 5 (N/O)

- (ii) The enzyme which hydrolyzes triglycerides to fatty acids and glycerol is called
 - (1) maltase
 - (2) zymase
 - (3) lipase
 - (4) pepsin
- (iii) In DNA, the complementary bases are
 - (1) adenine and guanine; thymine and cytosine
 - (2) uracil and adenine; cytosine and guanine
 - (3) adenine and thymine; guanine and cytosine
 - (4) adenine and thymine; guanine and uracil
- (b) Draw the structure of Ranitidine (Zantac).
- E=E (c) What dienes and dienophiles would you employ to synthesize the following compound?

1

UNIT-I

Answer any one question

2. (a) Predict the stereochemical products obtained in the following electrocyclic reactions (any one):

(i)
$$CH_3$$
 H CH_3 ?

(b) Complete the following reaction and discuss the mechanism involved:

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3

- (c) Explain briefly as to how a conjugated diene under photochemical conditions undergoes cyclization via a disrotatory path.
- 3. (a) How would you convert trans-5,6-dimethyl-1,3-cyclohexadiene into its cis-isomer?
 - (b) Draw the MO of 1,3-butadiene indicating HOMO in the ground and excited state.

P7/298

1

3

3

2

(c) Write the products with stereochemistry in the following Diels'-Alder reaction (any one):

(ii)
$$+$$
 C —OCH₃ \longrightarrow ?

(ii)
$$CH_3$$
 $C-C-CH_3$ CH_3 CH_3

UNIT-II

Answer any one question

4. (a) Sketch the stable conformational structure of the anomer of α-D-gluco-pyranose.

2

(b) Explain the products obtained in the following periodic oxidation of α-D-fructopyranose:

3

$$\alpha$$
-D-fructopyranose $\xrightarrow{D \text{ MeOH/HCl}}$ (A) $\xrightarrow{\text{HIO}_4}$ (B)

$$\frac{\text{Br}_2 \mid \text{H}_2\text{O}}{\Rightarrow} (C) \xrightarrow{\text{SrCO}_3} \text{strontium salt}$$

$$\frac{\text{H}_3\text{O}^+}{\Rightarrow} \text{hydroxypyruvic acid + glycolic acid}$$

P7/298

(Continued)

(0	the same lower aldose by Ruff
	degradation.
(á	What is epimerization? Explain it considering the conversion of
	D-mannose to D-glucose.
5. (a,	Why does the anomeric —OH group undergo methylation with CH ₃ OH and with HCl under reflux but others do not?
(b)	Convert D-fructose to D-glucose. 3
l (c)	furanose or a pyranose form from the following data:
D-gluco	se $\xrightarrow{\text{MeOH/HCl}}$ (A) $\xrightarrow{\text{Me}_2\text{SO}_4/\text{NaOH}}$ (B) $\xrightarrow{\text{dil.HCl}}$ (C) $\xrightarrow{\text{HNO}_3}$ (Methoxy malonic acid + Dimethoxy glyceric acid + dimethoxy succinic acid
	+ Methoxy acetic acid)
(d)	Erythrose $\xrightarrow{\text{KCN}} \xrightarrow{\text{Ba}^{+2}} \xrightarrow{\Lambda} \xrightarrow{\text{Na/Hg}} \xrightarrow{\text{H}_3\text{O}^+}$
	(A) + (B) $(A) \xrightarrow{\text{HNO}_3}$ Dibasic acid (optically active)
	(B) $\xrightarrow{\text{HNO}_3}$ Dibasic acid (optically inactive)
	Identify A and B. 2

UNIT—III

Answer any one question

6.	(a)	Synthesize one important pyrimidine base present only in RNA.	3
	(b)	How are enzymes classified on the basis of their functions?	3
	(c)	How does DNA replicate? How is the process responsible for preservation	
7.	(a)	What are complementary bases?	3
	id is	Draw the structure to show hydrogen bonding between adenine—thymine and guanine—cytosine.	3
	(b)	Write a short note on coenzyme.	3
d. bin	(c) (c)	Discuss the double-helical structure of DNA.	3
		(Namediosy plyconic self * distriction of the second self-	
		Unit—IV	
	Ogli	Answer any one question	
8.	(a)	Synthesize a drug which is used to bring down body temperature during fever.	0
	(b)	Draw the structure of chloramphenicol. What type of drug is it? 1+1=	2

(Continued)

	(c)	they are not antibiotics. Is this a valid	
		statement and why? 21/2	2
	(d)	Name the food sources and the deficiency diseases caused due to lack of vitamin C.	
9.	(a)	Write in brief about the medicinal importance of curcumin.	2
	(b)	Carry out the synthesis of an 11 antimalarial-chloroquine using the following sequential steps : $1\frac{1}{2}+1\frac{1}{2}+1=4$	
	Step	I : Synthesis of 5-dimethylamino- 2-amino pentane from AAE.	
	Step	II: Synthesis of 4,7-dichloro-quinoline from <i>m</i> -chloroaniline and oxalyl acetic ester.	0
	Step	III: Synthesis of chloroquine from above amino and quinoline derivatives.	
	(c)	Name the chemical responsible for antiseptic properties of Dettol.	1
	(d)	Synthesize sulphanilamide from sulphanilic acid.	2
P7/2	98	(Turn Over	4)

UNIT-V

Answer any one question

- 10. (a) Synthesize (±) α-terpineol from p-toluic acid.3
 - (b) Establish the structure of citral on the basis of analytical and synthetic evidences.
- 11. (a) What are geraniol and nerol? How would you assign their configuration?

 1+2=3
- (b) Complete the following oxidative degradation reactions of α-terpineol: 4

 $\begin{array}{c} \alpha\text{-terpineol} & \xrightarrow{1\% \text{ alk. KMnO}_4} \text{ trihydroxy compound} \\ C_{10} & \xrightarrow{C_{10}} \\ & \xrightarrow{CrO_3 \text{ in AcOH}} \text{ [ketohydroxy acid]} \\ & \xrightarrow{C_{10}} \end{array}$

ketolactone warm, alk. $KMnO_4$ terpenylic acid C_8 $KMnO_4$ terebic acid

(Old Course)

Full Marks: 48
Pass Marks: 19

Time: 3 hours

- 1. (a) Select the correct answer of the following: 1×3=3
 - (i) Glucose is stored in our body as
 - (1) carbohydrate
 - (2) fat
 - (3) glycogen
 - (4) lipid
 - (ii) The relationship between the nucleotide triplets and the amino acid is called
 - (1) enzyme
 - (2) genetic code
 - (3) replication
 - (4) mutation
 - (iii) The function of enzymes in the living system is to
 - (1) provide energy
 - (2) transport oxygen
 - (3) provide immunity
 - (4) catalyze biochemical reaction

- (b) What type of drug is chloramphenicol?
- (c) Giving one example, state isoprene rule. 1
 P7/298 (Turn Over)

UNIT-I

Answer any one question

2. (a) Draw the π -orbital diagrams for the ground state of 1,3-butadiene indicating HOMO.

2

3

(b) Explain that [4+2] cycloaddition is photochemically forbidden.

(c) What stereochemical products are obtained in the following reactions (any one)?

2

$$CH_3$$
 H
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

What is sigmatropic rearrangement?

Predict the products obtained in the

1+1+1=3

$$\begin{array}{c|c}
\text{O-CH}_2\text{-C=CH}_2\\
\text{Me} & \xrightarrow{\Delta} ?\\
\text{Me} & \xrightarrow{\Delta} ?
\end{array}$$

following reactions:

(Continued)

P7/298

3. (a)

(b)	What is meant by a pericyclic reaction?	?
,	With the help of FMO approach, show	V
	that Diels'-Alder reaction is a concerted	1 1
	stereospecific reaction. 1	+2=3

(c) Complete the following electrocyclic reaction:

UNIT-II

Answer any one question

4. (a) Represent β-D-fructopyranose in Haworth projection and its stable conformation.

(b) Convert D-ribose to a pair of epimeric-D-aldohexoses by using Fischer-Kiliani synthesis.

(c) Explain that both α-D-glucopyranose and α-D-allopyranose give the same strontium salt, having same specific rotation, by using periodic oxidation.

 α -D-glucopyranose α -D-allopyranose α -D-allo

SrCO₃ → strontium salt
having same specific rotation

(Turn Over)

1

2

3

(d)	Complete the following reactions: 2
D-glucop	$\frac{\text{Na-Hg} \text{H}_2\text{O}}{\text{or NaBH}_4} \rightarrow \text{optically active glucitol}$
	the Monthly Miland HI/red P
	ed Complete the following electron
5. (a)	Explain why D-glucose and D-fructose give the same osazone. 1½×2=3
(b)	Determine whether D-fructose is in a
	furanose or a pyranose form from the following evidences:
	ns anes?
	$\underbrace{\text{MeOH/HCl}}_{\text{NaOH}}(A) \xrightarrow{\text{excess Me}_2\text{SO}_4} (B) \xrightarrow{\text{dil. HCl}} (C)$
m	$\frac{\text{dil. HNO}_3}{\text{H}_2\text{SO}_4} \Rightarrow \delta\text{-lactone} \xrightarrow{\text{oxidation}} + \frac{\delta}{\text{HNO}_3}$
aldati 2	Arabinotrimethoxy glutaric acid
(c)	What happens when allopyranose
	reacts with acetone in presence of H ₂ SO ₄ ?
(d)	2 designation 2
(4)	Convert D-fructose to epimeric aldohexoses. 2
	Marian Share Unit—III
	10018103
O(H) (28	Answer any one question
6. (<i>a</i>)	Draw the structures of the—
	(i) nucleoside of guanosine;
P7/298	(ii) nucleotide of AMP. 1+1=2
PILADO	(Continued)

	(b)	How would you synthesize thymine from urea or thiourea?	2
	(c)	What kinds of specificity the enzymes display in their action?	2
	(d)	State the constitutional differences between DNA and RNA. Write down the names of the bases produced on hydrolysis of DNA. 2+1=	=3
7.	(4)	Synthesize one important purine present in both DNA and RNA.	2
	(b)	Write a note on replication of DNA.	2
	(c)	In what ways enzymes differ from a typical inorganic catalyst? Outline the steps in an enzyme-catalyzed reaction. 1+2	=3
	(d)	Distinguish between nucleotide and nucleoside.	2
		nobesupage and several and some	
		UNIT—IV Answer any one question	11
		Draw the structure of Ibuprofen. Give	-
8.	(a)	one important use of it.	2
	(b)	How do the sulpha drugs prevent the growth and multiplication of bacteria when administered into a host body?	3

	(c)	Synthesize a drug which can be used as analgesic and antipyretic from phenol.	2
	(d)	Define broad spectrum and narrow spectrum antibiotics giving one example of each.	2
9.	(a)	Draw the structures of sulphaguanidine and mention one specific use of it. 1+1=	2
2	(b)	Write in brief about the medicinal importance of Azadirachtin (Neem).	2
	(c)	Give the preparation of the following: 2+2=	4
		(i) Ibuprofen by using green method	
		(ii) Paracetamol	
	(d)	What is tincture of iodine? What is its use?	1
		UNIT—V Shipship	
		Answer any one question	
10.	(a)	How would you synthesize α-terpineol from diethyl malonate?	3
	(b)	Complete the following reactions:	2
		Citral $\xrightarrow{\text{H}_2/\text{cat.}}$ (A) $\xrightarrow{\text{oxidation}}$ CrO ₃ a dicarboxylic acid + a ketone	

- (c) What happens when nerol is treated with dil. H₂SO₄? Write the mechanism of the reaction involved.
- 2
- 11. (a) How will you establish the position of double bonds (α, β and isolated) in citral?
- 2

2

(b) Predict the products obtained in the following sequence of reactions:

$$CHO + CH_3 - C - CH_3 \xrightarrow{Base} (A) \xrightarrow{H_2SO_4} (B)$$

Complete the following reactions:

3

6-Methylhept-5-en-2-one
$$\frac{\text{Zn/A bromoester}}{\text{Reformatsky reaction}}$$
 (A)

$$Ac_2O$$
 \rightarrow $calcium salt$ \rightarrow Citral \rightarrow Citral

+++