2014

(November)

CHEMISTRY

(Major)

Course: 503

(Inorganic Chemistry—II)

Full Marks: 48
Pass Marks: 19

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Select the correct answer from the following:

 $1 \times 5 = 5$

- (a) Vaska's compound is
 - (i) [IrCl₃(CO)(PPh₃)₂]
 - (ii) [IrCl(CO)(PPh₃)₂]
 - (iii) [HCo(CO)₄]
 - (iv) [Ir(CO)4 (PPh3)2]

- (b) The stretching wave number of the CO molecule is 2143 cm⁻¹. The C—O stretching wave number of CO in Cr(CO)₆ is
 - (i) 2160 cm^{-1}
 - (ii) 2000 cm⁻¹
 - (iii) 2260 cm⁻¹
 - (iv) 2243 cm⁻¹
- (c) Total electron count for the compound [Fe₄N(CO)₁₂] is
 - (i) 60
 - (ii) 62
 - (iii) 72
 - (iv) 59
- (d) The complex [Fe(NO)₄] contains the ligand NO in the form of
 - (i) NO
 - (ii) NO+
 - (iii) NO-
 - (iv) both NO+ and NO-
- (e) 1,10-phenanthroline iron(II) sulphate may be used as
 - (i) metal ion indicator
 - (ii) adsorption indicator
 - (iii) redox indicator
 - (iv) neutralization indicator

2.	Ans	wer the following questions: 2×5	=10
	(a)	What is the importance of Zeise's salt in organometallic chemistry? How was it prepared?	1=2
	(b)	Mention the conditions necessary for isolobality of two molecular fragments.	2
	(c)	Give a method of preparation of sodium nitroprusside.	2
	(d)	Complete the following reactions: 1+ (i) $Co_2(CO)_8 + NO \xrightarrow{40 ^{\circ}C}$ (ii) $FeI_2 + CO + Cu \xrightarrow{200 ^{\circ}C}$	1=2
	(e)	Define standard deviation in quantitative analysis.	2
3.		wer any <i>three</i> questions from the wing:	3=9
	(a)	Discuss the structure of ferrocene.	3
	(b)	Give the reaction path of the hydrogenation of olefin with the help of	
		Wilkinson's catalyst.	3

(c)	Explain reductive elimination reaction with suitable example.
(d)	Discuss the structure and bonding of mononuclear metal carbonyls.
(e)	How will you distinguish terminal carbonyl group from bridging carbonyl group in metal carbonyl compounds?
4. Ans	ower any <i>three</i> questions from the owing: $3 \times 3 = 9$
(a)	Outline the rules for polyhedral skeletal electron pair theory.
(b)	What are low nuclearity cluster compounds? Discuss the structure of $Fe_3(CO)_{12}$. 1+2=3
(c)	In what ways NO can form bond with a metal? Discuss.
(d)	In the cluster Co ₄ (CO) ₁₂ —
	(i) make total electron count;
	(ii) find the number of skeletal electron pair;
	(iii) find the number of vertices;
do gla	(iv) state whether the structure will be closo, nido; or arachno;
	(v) draw the structure. $(\frac{1}{2}\times4)+1=3$

- **5.** Answer any *three* questions from the following: 3×3=9
 - (a) What are determinate and indeterminate errors? Explain additive and proportional errors. 1+2=3
 - (b) What type of indicators will you use in the titration of (i) strong acid and weak base and (ii) weak acid and strong base?

 Explain giving reasons.

 1½+1½=3
 - (c) Write a short note on adsorption indicator.
 - (d) What are metal ion indicators? Give two examples with structure. 1+2=3
- **6.** Discuss the use of the following reagents in inorganic analysis (any *three*): 2×3=6
 - (a) Benzoin-α-oxime
 - (b) 8-hydroxyquinoline
 - (c) Diphenylcarbazide
 - (d) 1,10-phenanthroline
 - (e) Magneson

* * *