## 5 SEM TDC CHM M 7

2013

(November)

## CHEMISTRY

(Major)

Course: 507

# ( Symmetry and Quantum Chemistry )

Full Marks: 48
Pass Marks: 19

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following: 1×5=5
  - (a) The  $H_2O$  molecule belongs to  $C_{2v}$  point group. It does not possess
    - (i) C<sub>2</sub> symmetry axis
    - (ii) C<sub>4</sub> symmetry axis
    - (iii) o,, plane
    - (iv) E

- (b) The quantum number accounts for the Zeeman effect is
  - (i) magnetic quantum number
  - (ii) spin quantum number
  - (iii) azimuthal quantum number
  - (iv) None of the above
- (c) The bond order of O2 is
  - (i) 3·0
  - (ii) 2·5
  - (iii) 2·0
  - (iv) 1.0
- (d) The maximum kinetic energy of the photoelectrons varies directly with
  - (i) wavelength
  - (ii) frequency
  - (iii) intensity
  - (iv) None of the above
- (e) A wave function ψ satisfies the equation

$$\int_{-\infty}^{+\infty} \psi^* \psi dx = 1$$

The function is said to be

- (i) orthogonal
- (ii) diagonal
- (iii) normalized
- (iv) None of the above

- **2.** Answer any *five* questions from the following:  $2 \times 5 = 10$ 
  - (a) Taking  $NH_3$  as an example of trigonal pyramid molecule, discuss symmetry operations in  $C_{3v}$  point group molecules.
  - (b) Show that the following functions are orthogonal to each other:

(i) 
$$\left(\frac{1}{\pi}\right)^{1/2}\cos nx$$

(ii) 
$$\left(\frac{1}{\pi}\right)^{1/2} \sin nx$$

- (c) Calculate the eigenvalue of the function  $\psi = \sin 7x$ , where operator  $\frac{d^2}{dx^2}$  is operated upon it.
- (d) Calculate the zero-point vibrational energy of a one-particle, one-dimensional system, if  $E_v = (v + \frac{1}{2})hv_0$ .
- (e) Write a short note on Bravais lattice.
- (f) Hermitian operators have real eigenvalues. Explain.

#### UNIT-I

- 3. Answer any three questions from the following: 3×3=9
  - (a) Write short notes on symmetry elements and symmetry operations.
  - (b) Discuss the following with reference to symmetry elements and symmetry operations:
    - (i) CO<sub>2</sub>
    - (ii) C2H4
    - (iii) PC15
  - (c) Construct the character table for  $C_{3\nu}$  point group.
  - (d) State, without any derivation, the five rules about irreducible representation of a group and their characters by making use of 'great orthogonality theorem'.
  - (e) Give the reducible representation of character table for  $C_{2\nu}$  point group.

### UNIT-II

Answer any two questions:

9×2=18

4. (a) What are eigenfunctions and eigenvalues? Normalize the function  $\psi = x^2$  over the interval  $0 \le x \le k$ , where k is a constant.

| (b) | The distance between the atoms of a diatomic molecule is r and its reduced               |
|-----|------------------------------------------------------------------------------------------|
|     | mass is $\mu$ . If its angular momentum is $L$ and moment of inertia is $I$ , prove that |

kinetic energy;  $T = \frac{L^2}{2\mu I^2}$  3

(c) Deduce the equation showing Hamiltonian operator for one-dimensional harmonic oscillator.

5. (a) Deduce the Schrödinger's wave equation on the basis of classical wave concept.

(b)  $\psi_i$  and  $\psi_j$  represent the wave functions corresponding to two different states of a particle in a box. Show that they are orthogonal to each other.

(c) Determine the degree of degeneracy of the energy levels  $\frac{17h^2}{8ma^2}$  of a particle in a three-dimensional box.

- 6. (a) Solve the Schrödinger's wave equation for a particle in a one-dimensional box and find its energy. Why is the value n=0 of the quantum number not permitted? 4+1=5
  - (b) Sketch  $\psi$  and  $\psi^2$  for the states n=3 and n=4 of a particle in a one-dimensional box.

4

2

3

#### UNIT-III

7. Explain on the basis of LCAO-MO theory how a single electron can bind two hydrogen nuclei to form a stable hydrogen molecule ion.

4

8. What are the main differences between VBT and MOT?

2

#### Or

Draw the MO energy-level diagram for any one of the following molecules and find the bond order:

2

- (a) CO molecule
- (b) NO molecule

\* \* \*