Total No. of Printed Pages—7

5 SEM TDC MTH M 2

2019

(November)

MATHEMATICS

(Major)

Course: 502

(Linear Algebra and Number Theory)

Full Marks: 80
Pass Marks: 32/24

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Linear Algebra)

(Marks: 40)

1. (a) Write the necessary and sufficient condition for existence of non-trivial solution of the homogeneous system Ax = 0.

(b) Let F be a field and V be the set of all ordered pairs (x, y), $x \in F$, $y \in F$. Define—

(i)
$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2);$$

(ii) $\alpha(x, y) = (\alpha x, y)$, where $\alpha \in F$.

Show that V cannot be a vector space with respect to the operations defined as above.

(c) Show that the set

$$S = \{1, x, x^2, \dots, x^n\}$$

of n polynomials is a basis set for the vector space P_n (\mathbb{R}) of all polynomials of degree $\leq n$ with real coefficients.

(d) Determine the consistency of the following system of linear equations:

$$3x_1 + 4x_2 - x_3 + 2x_4 = 1$$

$$x_1 - 2x_2 + 3x_3 + x_4 = 2$$

$$3x_1 + 14x_2 - 11x_3 + x_4 = 2$$

(e) Find the general solution of the following system of linear equations:

$$2x_1 + 3x_2 - x_3 + 2x_4 = 3$$

$$x_1 + 2x_2 + x_3 - 3x_4 = 1$$

$$2x_1 + x_2 - 6x_3 + x_4 = -2$$

2

3

3

(f) Let V be the vector space of all 2×2 matrices over a field F. Let

$$W_{1} = \left\{ \begin{pmatrix} x & y \\ z & 0 \end{pmatrix} \middle| x, y, z \in F \right\} \text{ and}$$

$$W_{2} = \left\{ \begin{pmatrix} x & 0 \\ 0 & z \end{pmatrix} \middle| x, z \in F \right\}$$

Show that W_1 and W_2 are subspaces of V. Also compute $W_1 + W_2$ and $W_1 \cap W_2$. 2+2+2=6

- 2. (a) Define affine space of a vector space.

 Is it a vector subspace of V? 1+1=2
 - (b) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be given by

$$T(x, y) = (x, y, xy), x, y \in \mathbb{R}$$

Prove that *T* cannot be a linear transformation.

(c) What do you understand by nullity of a linear transformation? Find the nullity of T, where $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by

$$T(x_1, x_2) = (x_1 + x_2, x_1 - x_2, x_2)$$

given T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^3 . 1+2=3

(d) Let $T: \mathbb{R}^2 \to \mathbb{R}^4$ be the linear transformation defined by

 $T(x, y) = (x, y, x+y, x-y), x, y \in \mathbb{R}$ Find the matrix of T with respect to the standard bases.

3

(e) Let V and W be finite dimensional vector spaces and $T:V\to W$ be a linear transformation. Then prove that

 $\dim V = \operatorname{rank} T + \operatorname{nullity} T$

5

(f) Let W be a vector subspace of a vector space V over \mathbb{R} . Let $v_1 + W$ and $v_2 + W$ be cosets of W in V. Then prove that

either
$$(v_1 + W) \cap (v_2 + W) = \phi$$

or $v_1 + W = v_2 + W$

Moreover, $v_1 + W = v_2 + W$ iff $v_1 - v_2 \in W$.

GROUP-B

(Number Theory)

(Marks: 40)

- 3. (a) What is well ordering principle of positive integers?

 (b) Answer any two from the following
 - (b) Answer any two from the following questions: 3×2=6
 - (i) Prove that the square of any odd integer is of the form 8k + 1.
 - (ii) If (a, b) = d, then show that $\frac{a}{d}$ and $\frac{b}{d}$ are relatively prime.
 - (iii) Suppose a, b, x are integers such that $a \mid bx$. If (a, b) = 1, then prove that $a \mid x$.
- 4. (a) Answer any two from the following questions: 3×2=6
 - (i) List 15 consecutive natural numbers so that none of them is a prime number.
 - (ii) Evaluate $(a+b, p^4)$ given that $(a, p^2) = p$ and $(b, p^3) = p^2$, where p is a prime.
 - (iii) Find the highest power of 7 dividing 2000!.

(Turn Over)

- (b) Let p > 1 and p has the property that if for any $a, b \in \mathbb{Z}$, $p|ab \Rightarrow p|a$ or p|b. Then prove that p is a prime.
- 5. (a) State Fermat's theorem. Is the converse true? 1+1=2
 - (b) Answer any two from the following questions: 4×2=8
 - (i) For $a, b \in Z$, prove that $a \equiv b \pmod{n}$ if and only if a and b leave the same remainder upon division by n.
 - (ii) Using congruence, prove that 41 divides $2^{20} 1$.
 - (iii) Using Chinese remainder theorem, solve

 $x \equiv 2 \pmod{3}$

 $x \equiv 3 \pmod{5}$

 $x \equiv 2 \pmod{7}$

(c) Prove that $am \equiv bm \pmod{n}$ if and only if

$$a \equiv b \left(\bmod \frac{n}{(m, n)} \right)$$

Write the necessary condition so that $am \equiv bm \pmod{n}$ gives $a \equiv b \pmod{n}$. 4+1=5

6.	(a)	What is the domain of definition of an arithmetic function?	1
	(b)	Prove that $\phi(n) = \frac{n}{2}$, if n is a power	
		of 2.	2
	(c)	Find the value of σ (180).	2
	(d)	Prove that $\sigma_{-k}(n) = n^{-k}\sigma_k(n)$.	2
	(e)	If m, n are two relatively prime positive integers, then prove that	
		$P(mn) = P(m)^{d(n)} \cdot P(n)^{d(m)}$	3
