5 SEM TDC MTH M 4

2019

(November)

MATHEMATICS

(Major)

Course: 504

(Mechanics and Integral Transform)

Full Marks: 80
Pass Marks: 32/24

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Mechanics)

(a) : Statics

(Marks : 25)

- 1. (a) Write the definition of wrench.
 - (b) Choose the correct one:
 - (i) Screw is a curve.
 - (ii) Screw is a couple.
 - (iii) Screw is a force.

(Turn Over)

1

- (iv) Screw is a definite straight line associated with a definite pitch.
- (c) Find the equations of the central axis of a system of forces acting on a rigid body.

Or

Find the necessary and sufficient conditions for equilibrium of a rigid body.

- 2. (a) Write the radius of curvature at any point of a catenary.
 - (b) Write two forces which can be omitted while constructing equation of virtual work.
 - (c) Deduce the Cartesian equation of common catenary.

Or

Four uniform rods are joined to form a rectangle *ABCD*. *AB* is fixed in a vertical position with *A* uppermost, and the rectangle is kept in shape by a string joining *AC*. Find the tension of the string.

(Continued

8

1

2

(d) State and prove the principle of virtual work for a system of coplanar forces acting at different points of a rigid body.

Or

9711

A hemisphere rests in equilibrium on a sphere of equal radius; show that the equilibrium is unstable when the curved surface of the hemisphere and stable when the flat surface of the hemisphere rests on the sphere.

(b): Dynamics

(Marks : 25)

3. (a) Derive the equation of simple harmonic motion.

Or

Find the radial component of velocity of a particle.

(b) If the radial and transverse velocities of a particle are always proportional to each other, then show that the path is an equiangular spiral.

(a)	Write the equation of central orbit in	
	pedal form.	1
(d) on a the condition of the condition	Choose the correct answer for the following: Resisting force (i) acts along the direction of motion (ii) is non-conservative (iii) is conservative (iv) obeys principle of conservation of energy	1
(c)	A particle describes the curve $r^n = a^n \cos n\theta$ under a force F to the pole. Find the law of force.	5
	or Or	
	A particle falls under gravity, supposed constant in a resisting medium whose resistance varies as the square of the velocity. Find the motion of the particle, if it starts from rest.	
(a)	Define radius of many	
		1 5
	(b) a 110 been 210 c) c)	 (b) Choose the correct answer for the following: Resisting force (i) acts along the direction of motion (ii) is non-conservative (iii) is conservative (iv) obeys principle of conservation of energy (c) A particle describes the curve rⁿ = aⁿ cos nθ under a force F to the pole. Find the law of force. Or A particle falls under gravity, supposed constant in a resisting medium whose resistance varies as the square of the velocity. Find the motion of the particle, if it starts from rest. (a) Define radius of gyration. (b) State and prove the thouse of the policy of the particle of the prove the thouse of the policy of the proveness.

Or

Prove that the reversed effective forces acting on each particle of the body and the external forces of the system are in equilibrium.

(c) Find the moment of inertia of a rectangular lamina about a line through its centre and parallel to one of its edges.

4

GROUP-B

(Integral Transform)

(Marks : 30)

6. (a) Write the values of the following: $1\times 3=3$ (i) $L\{t^2\}$ (ii) $L\{\sin^2 t\}$

(iii) $L\{e^{2t}\}$

(b) Find $L\{te^{3t}\}$.

(c) Find $L\{t^2\cos^2 t\}$.

Or

Show that, if L(F(t)) = f(s), then

$$L\{F(at)\} = \frac{1}{a}f\left(\frac{s}{a}\right)$$

7. (a) Write the value of

$$L^{-1}\left\{\frac{1}{s-1}\right\}$$

(b) Evaluate:

$$L^{-1} \left\{ \frac{e^{-2s}}{(s-2)^2} \right\}$$

(c) Evaluate:

$$L^{-1}\left\{\log\frac{s+6}{s+3}\right\}$$

Or

Evaluate
$$L^{-1}\left\{\frac{s}{(s^2+4)^2}\right\}$$
.

8. (a) Write the value of $L\left\{\frac{\partial^2 y}{\partial x^2}\right\}$.

1

1

(b) Solve any two of the following:
$$4\times2=8$$

(i)
$$\frac{d^2y}{dt^2} + y = \cos t$$
, $y(0) = 0$, $y'(0) = 0$

(ii)
$$\frac{d^2y}{dt^2} + 9y = 6\cos 3t$$
, $y(0) = 2$, $y'(0) = 0$

(iii)
$$\frac{d^2y}{dt^2} + y = t\cos 2t, \ t > 0, \ y(0) = 0, \ y'(0) = 0$$

(c) Solve the following:

 $\frac{dx}{dt} + \frac{dy}{dt} = t$ $\frac{d^2x}{dt^2} - y = e^{-t}, \ x(0) = 0, \ y(0) = 0, \ x'(0) = 0$

Or

Find the bounded solution of

$$\frac{\partial y}{\partial x} = 2 \frac{\partial y}{\partial t} + y$$
, if $y(x, 0) = 6e^{-3x}$

* * *