5 SEM TDC MTH M 2

2018

(November)

MATHEMATICS

(Major)

Course: 502

(Linear Algebra and Number Theory)

Full Marks: 80

Pass Marks: 32/24

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Linear Algebra)

(Marks: 40)

1. (a) Choose the correct answer from the brackets to fill in the blank:

"A set consisting of a single non-zero vector is ____."

(linearly dependent / linearly independent)

1

(b) For $x = (x_1, x_2)$ and $y = (y_1, y_2)$ of \mathbb{R}^2 and $\alpha \in \mathbb{R}$, let $x + y = (x_1 + y_1, x_2 + y_2)$ and $\alpha x = \alpha(x_1, x_2) = (\alpha x_1, 0)$.

Is \mathbb{R}^2 a vector space with respect to the above operations? Justify your answer.

1+1=2

3

(c) Let V be a vector space and X be a non-empty set. Let W be the set of functions $f: X \rightarrow V$. On W, define addition and scalar multiplication as follows

$$(f+g)(x) = f(x) + g(x), f, g \in W, x \in X$$
$$(\alpha \cdot f)(x) = \alpha f(x), \alpha \in \mathbb{R}, x \in X$$

Then show that W is a vector space.

- (d) Prove that any basis of a finite dimensional vector space is finite. 4
- (e) Let W be the subspace of \mathbb{R}^4 generated by the vectors (1, -2, 5, -3), (2, 3, 1, -4) and (3, 8, -3, -5). Find a basis of W.
- (f) Find for what value of k the vector u = (1, -2, k) in \mathbb{R}^3 is a linear combination of the vectors v = (3, 0, -2) and w = (2, -1, -5).

3

(g) Let W_1 and W_2 be two subspaces of a finite dimensional vector space, then show that

 $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2)$ 4

- 2. (a) Let V be a finite dimensional vector space, then prove that any two bases of V have the same number of elements.
 - (b) Examine whether the following mappings are linear or not: 2+2=4
 - (i) $T: \mathbb{R}^3 \to \mathbb{R}$ defined by T(x, y, z) = 2x 3y + 4z
 - (ii) $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (|x|, 0)
 - (c) Let S and T be two subsets of a vector space V(F), then show that

 $S \subseteq L(T) \Rightarrow L(S) \subseteq L(T)$ 4

- (d) Define line of a vector space. Show that any two distinct points determine a unique line. 1+2=3
- (e) Prove that any two *n*-dimensional vector spaces are isomorphic.

GROUP-B

(Number Theory)

(Marks: 40)

- 3. For any integers a, b, c, show that a|b, $a|c \Rightarrow a|bx+cy \ \forall x, y \in \mathbb{Z}$.
- **4.** Answer any *two* from the following : $3\times 2=6$
 - (a) Let a and b any positive integers, then prove that $(a, b) \cdot [a, b] = ab$.
 - (b) Using Euclidean algorithm, solve the equation 726x+275y=11.
 - (c) Prove that there is no natural number in between 0 and 1.
 - 5. (a) Show that there are infinitely many primes of the form 4n+3.
 - (b) Prove that

$$S_n = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}$$

is never an integer.

(c) Let p be a prime and a any integer, then show that either $p \mid a$ or (a, p) = 1.

3

3

2

6.	(a)	State Fermat's little theorem.	1
	(b)	Show that the relation of congruence on	11
		integers is an equivalence relation.	3
	(c)	Show that $10^n + 3 \cdot 4^{n+2} + 5$ is divisible	
		by 9.	3
	(d)	If p is prime, then prove that	
		$(p-1)! \equiv -1 \pmod{p}$	4
	(e)	Find all solutions in positive integers of	
		5x + 3y = 52	4
		Or	
		Using Chinese Remainder theorem,	
		solve	
		$x \equiv 5 \pmod{18}$	
		$x \equiv -1 \pmod{24}$	
		$x \equiv 17 \pmod{33}$	4
7.	(a)	Prove that	
		$P(n) = n^{\frac{d(n)}{2}}$	3
	(b)	Prove that	4
		$\sum_{i} \phi(d) = n, \forall n \in \mathbb{N}$	-
	(0)	What are the positive integers x , y that	
	(c)	satisfy the expression $\phi(xy) = \phi(x) + \phi(y)$?	3
