5 SEM TDC MTH M 4

2018

(November)

MATHEMATICS

(Major)

Course: 504

(Mechanics and Integral Transform)

Full Marks: 80
Pass Marks: 32/24

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Mechanics)

(a) : Statics

(Marks: 25)

- 1. (a) Define moment of a force.
 - (b) Write when a system is called equipollent to zero.
 - (c) Write the quantities which are invariants for any given system of forces.

(Turn Over)

1

1

(d)	Find the equations of the central axis of a system of forces acting on a rigid	
	body.	7
	Find the null point of the plane $lx + my + nz = 1$.	7
2. (a)	Define virtual work.	2
(b)	Deduce the intrinsic equation of common catenary. Or	7
	A regular hexagon <i>ABCDEF</i> consists of six equal uniform rods, each of weight w , freely jointed together. The hexagon rests in a vertical plane and AB is in contact with a horizontal table, if c and F be connected by a light string, prove	
	that its tension is $\sqrt{3} w$.	7
(c)	Discuss the conditions of stability for a body with one degree of freedom. Or	6
buli m lo di	In a common catenary, show that, (i) $s = c \sinh \frac{x}{c}$ (ii) $y = c \sec \psi$ (iii) $T = wy$	6
9/385	(Continu	ed)

P9/385

(b) : Dynamics

(Marks : 25)

- 3. (a) Write the value of $\frac{d}{dt}(\hat{h})$.
 - (b) Find the radial and transverse components of acceleration.

Or

Let a particle moves in a plane curve, so that its tangential and normal accelerations are equal and the angular velocity of the tangent is constant. Find the curve.

4. (a) Resisting force

- (i) is conservative
- (ii) is non-conservative
- (iii) acts along the direction of motion
- (iv) None of the above

(Choose the correct option)

(b) A particle describes a circle, pole on its circumference, under a force P to the pole. Find the law of force.

Or

A particle is projected upwards under gravity, supposed constant, in a 7

7

1

6

		resisting medium whose resistance varies as the square of the velocity. Find	
		the motion.	6
5.	(a)	State the principle of d'Alembert.	1
	(b)	Describe momental ellipsoid.	3
	(c)	Find the moment of inertia of a uniform triangular lamina about one side.	6
		Or	
		State and prove the theorem of parallel axes of moment of inertic	6

GROUP-B

(Integral Transform)

(Marks: 30)

- **6.** (a) Write the values of the following: 1+1+1=3
 - (i) $L\{t^{\frac{3}{2}}\}$
 - (ii) $L\{\sin 2t\}$
 - (iii) $L\{e^{iat}\}$
 - (b) Find $L\{t\sin 4t\}$.

2

(c) Find $L\{te^{2t}\sin 3t\}$.

3

Or

If f(s) = L(F(t)), then prove that

$$L\left\{\frac{d^{n}F(t)}{dt^{n}}\right\} = s^{n}f(s) - s^{n-1}F(0)$$

$$-s^{n-2}F'(0) - \dots - sF^{(n-2)}(0) - F^{(n-1)}(0)$$
3

7. (a) Write the value of $L^{-1}\left\{\frac{1}{s^2}\right\}$.

(b) Find
$$L^{-1}\left\{\frac{s+4}{s^2+8s+25}\right\}$$
.

2

(c) Find (any one):

2

(i)
$$L^{-1} \left\{ \frac{s}{(s+3)^{\frac{3}{2}}} \right\}$$

(ii)
$$L^{-1}\left\{\frac{1}{(s+a)(s+b)}\right\}$$

(d) Find
$$L^{-1} \left\{ \frac{s}{(s^2 + 2)^2} \right\}$$
.

Or

If $L^{-1}\{f(s)\}=F(t)$, then show that

$$L^{-1} \{ f(s-a) \} = e^{at} F(t)$$
 3

8. (a) Write the value of $L\left\{\frac{\partial y}{\partial t}\right\}$.

1

 $4 \times 2 = 8$

(i)
$$\frac{d^2y}{dt^2} + 25y = 10\cos 5t$$
, $y(0) = 2$, $y'(0) = 0$

(ii)
$$2\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 2y = e^{-2t}$$
, $y(0) = 1$, $y'(0) = 1$

(iii)
$$\frac{d^2y}{dt^2} + y = 2$$
, $y(0) = 3$, $y'(0) = 1$

(c) Solve:

5

$$\frac{dx}{dt} - y = e^t$$
, $\frac{dy}{dt} + x = \sin t$, $x(0) = 1$, $y(0) = 0$

Or

Find the bounded solution of
$$\frac{\partial y}{\partial t} = \frac{\partial^2 y}{\partial x^2}$$
, $x > 0$, $t > 0$ and $y(0, t) = 1$, $y(x, 0) = 0$.

5

* * *