5 SEM TDC MTH M 2

2017

(November)

MATHEMATICS (Major)

Course: 502

(Linear Algebra and Number Theory)

Full Marks: 80

Pass Marks: 32/24

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Linear Algebra)

(Marks: 40)

- 1. (a) When are two systems of linear equations said to be equivalent?
 - (b) Is the vector space \mathbb{R}^2 a subspace of \mathbb{R}^3 ? Give reasons to your answer. 1+1=2
 - (c) Prove that if two vectors in a vector space are linearly dependent, then one of them is a scalar multiple of the other.

2

(d) Determine whether the following system is consistent or not:

$$2x_1 - 3x_2 + 2x_3 = 1$$
$$x_2 - 4x_3 = 8$$
$$5x_1 - 8x_2 + 7x_3 = 1$$

- (e) Show that the set $H = \{(3t, 2+5t) : t \in Z\}$ cannot be a subspace of the vector space \mathbb{R}^2 .
- (f) Find the value of h so that the vector w be in the subspace of \mathbb{R}^3 spanned by the vectors v_1 , v_2 , v_3 , where

$$v_1 = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 5 \\ -4 \\ -7 \end{bmatrix}, \quad v_3 = \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix} \text{ and } w = \begin{bmatrix} -4 \\ 3 \\ h \end{bmatrix}$$

(g) Show that the set

$$B = \{(1, 0, 0), (1, 1, 0), (1, 1, 1)\}$$

is a basis of the real vector space \mathbb{R}^3 . Hence find the coordinates of the vector (a, b, c) with respect to the above basis.

O

If W is a subspace of a finite dimensional vector space V over a field F, then prove that

$$\dim \frac{V}{W} = \dim V - \dim W$$

(Continued)

3

3

5

- 2. (a) Define an affine subspace of a vector space with example.
- 2

2

- (b) Show that $u = \begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix}$ belongs to the null space of $A = \begin{bmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix}$.
- (c) Define null space of a linear transformation. Let U and V be two vector spaces over the same field F and T be a linear transformation from U into V. Then prove that the null space of T is a subspace of U. 1+2=3
- (d) Let T be the linear operator on \mathbb{R}^2 defined by

$$T(x, y) = (4x - 2y, 2x + y)$$

Find the matrix representation of T relative to the basis $\{(1, 1), (-1, 0)\}$.

(e) Let V be the vector space of all complex numbers a+ib over the field of reals \mathbb{R} and let T be a mapping from V to \mathbb{R}^2 defined as T(a+ib)=(a,b). Show that T is an isomorphism of V into \mathbb{R}^2 .

4

4

(f) Find the range and Kernel of $T: \mathbb{R}^3 \to \mathbb{R}^3$, defined by

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x+z \\ x+y+2z \\ 2x+y+3z \end{pmatrix}$$

GROUP-B

(Number Theory)

(Marks: 40)

- **3.** (a) When are two integers said to be relatively prime?
 - (b) Prove that if a|b and $b \neq 0$, then $|a| \leq |b|$.
 - (c) Show that the square of any odd integer is of the form 8k+1.
 - **4.** Answer any two of the following:
 - (a) Prove that there exists no rational algebraic formula which represents prime numbers only.
 - (b) Prove that the set of prime numbers is infinite.
 - (c) Show that [x]+[-x]=0 or -1 according as x is an integer or fraction.

(Continued

5

1

3×2=6

5.	Writ	the the values of $[-\pi]$ and $\left[\frac{1}{9}\right]$.	2
6.	(a)	Write the reduced set of residues mod 40.	1
	(b)	Prove that if $a \equiv b \pmod{n}$ and $m \mid n$, then $a \equiv b \pmod{m}$.	2
	(c)	Find the remainder when 2 ⁵¹ is divided by 7.	2
	(d)	Find the positive integer solutions of the equation $7x+19y=213$. Also determine the number of solutions for this equation. Or	=5
		Solve $9x \equiv 21 \pmod{30}$ in integers and also find the total number of incongruent solutions.	5
	(e)	Solve the following: $x \equiv 1 \pmod{3}$ $x \equiv 2 \pmod{5}$ $x \equiv 3 \pmod{7}$	5

(a)	Define $\sigma(n)$ and find $\sigma(2)$.	1+2=3
(b)	Prove that if p is a prime, then	
	$\phi(p) + \sigma(p) = p \cdot d(p)$	2
(c)	Prove that if $\sigma_{-k}(n) = n^{-k} \sigma_k(n)$.	3
(d)	Evaluate: $P(10)$ and $\mu(24)$	4) 2
	(b) (c)	(b) Prove that if p is a prime, then $\phi(p) + \sigma(p) = p \cdot d(p)$ (c) Prove that if $\sigma_{-k}(n) = n^{-k} \sigma_k(n)$. (d) Evaluate:

* * *

the number of solutions for this equation.

Or

Solve 9 v o 21(mid30) in integers and also find the rotal number of inconcruent solutions.

 $x = 2 \pmod{5}$ $x = 3 \pmod{7}$