5 SEM TDC MTH M 3

2017

(November)

MATHEMATICS

(Major)

Course: 503

(Fluid Mechanics)

Full Marks: 80
Pass Marks: 32/24

Time: 3 hours

The figures in the margin indicate full marks for the questions

(A) Hydrodynamics

(Marks : 35)

- 1. (a) Write the equation of streamline.
 - (b) Choose the correct alternative:

 If the motion is irrotational, then

(i)
$$\vec{\omega} = \frac{1}{2} \operatorname{curl} \vec{q} = \vec{0}$$

(ii)
$$\vec{\omega} = \text{curl } \vec{q} = \vec{0}$$

(iii)
$$\vec{\omega} = \operatorname{div} \vec{q} = \vec{0}$$

(iv) None of the above

- (c) Why is equation of continuity called equation of conservation of mass?
- (d) Define vorticity vector. 2
- (e) Find the paths of the particle, when $u = \frac{x}{1+t}, \ v = \frac{y}{1+t}, \ w = \frac{z}{1+t}$
- (f) Determine the equation of continuity by vector approach for incompressible fluid.

Determine whether the motion specified by $\vec{q} = \frac{A(x\hat{j} - y\hat{i})}{x^2 + y^2}$, (A = constant) is a

possible motion, for an incompressible fluid. If so, determine the streamlines.

- 2. (a) Write down the Euler's equation of motion in vector form.
 - (b) Deduce the equation of motion under impulsive forces.
 - (c) State and prove Bernoulli's equation of unsteady and irrotational flows.

1

7

1

5

A stream in a horizontal pipe, after passing a contraction in the pipe at which its sectional area is A is delivered at atmospheric pressure at a place, where the sectional area is B. Show that if a side tube is connected with the pipe at the former place, water will be sucked up through it into the pipe from a reservoir at a depth $\frac{s^2}{2g} \left(\frac{1}{A^2} - \frac{1}{B^2} \right)$ below the pipe, s being the delivery per second.

3. (a) Define acyclic irrotational motion.

(b) State True or False:

In irrotational motion, the velocity cannot be a maximum in the interior of the fluid.

(c) State and prove Kelvin's minimum energy theorem.

Or

If a region lying wholly in a liquid be bounded by a spherical surface, then prove that the mean value of the velocity potential over the surface is equal to its value at the centre of the sphere. 1

1

(B) Hydrostatics

(Marks: 45)

- 4. (a) Define fluid pressure.
 - (b) What is hydrostatic paradox?
 - (c) Prove that the necessary and sufficient condition that a given distribution of forces (X, Y, Z) can keep a liquid in equilibrium is that

$$X\left(\frac{\partial Y}{\partial z} - \frac{\partial Z}{\partial y}\right) + Y\left(\frac{\partial Z}{\partial x} - \frac{\partial X}{\partial z}\right) + Z\left(\frac{\partial X}{\partial y} - \frac{\partial Y}{\partial x}\right) = 0$$
 7

- (d) (i) Prove that the densities at two points in a fluid at rest under gravity and in the same horizontal plane are equal.
 - (ii) Three liquids, whose densities are in AP, fill a semicircular tube whose bounding diameter is horizontal.

 Prove that the depth of one of the common surfaces is double that of the other.

 3+4=7

A fine circular tube in the vertical plane contains a column of liquid, of density δ , which subtends a right at the centre and a column of density δ' subtending angle α . If θ is the angle that the radius through the common surface makes with the vertical, prove that

$$\tan \theta = \frac{\delta - \delta' + \delta' \cos \alpha}{\delta + \delta' \sin \alpha}$$

- The whole pressure of a heavy homogeneous liquid on a plane is equal to the product of the area and the pressure at its _____.
 - (b) Define force of buoyancy and centre of buoyancy.
 - (c) Find the whole pressure on a triangle, the depths of whose vertices are h_1 , h_2 , h_3 and the liquid being homogeneous.
 - (d) Prove that the position of the centre of pressure of a plane area is independent of the inclination of the area to the vertical.

(Turn Over)

2

2

A circular area of radius a is immersed with its vertical and centre at a depth h. Find the depth of centre of pressure.

(e) A cone floats with its axis horizontal in a liquid of density double its own; find the pressure on its base and prove that if θ be the inclination to the vertical of the resultant thrust on the curved surface and α the semi-vertical angle of the cone, then

$$\tan\theta = \frac{4}{\pi}\tan\alpha$$

Or

A rectangular area is immersed in a heavy homogeneous liquid with two sides horizontal and is divided by horizontal lines into strips on which the total thrusts are equal. If a, b, c are the breadths of three consecutive strips, prove that

$$a(a+b)(b-c) = c(b+c)(a-b)$$

6. (a) State the condition of equilibrium of a body floating in more than one liquid.

2

(b) A thin rod of weight W is loaded at one end with a weight P of insignificant volume. If the rod floats in an inclined position with $\frac{1}{n}$ th of its length out of the water, prove that (n-1)P = W.

(c) Show that the equilibrium is stable, unstable or neutral according as the metacentre is above, below or on the centre of gravity of the body.

Or

A solid cone of semi-vertical angle α , specific gravity σ floats in equilibrium in the liquid of specific gravity ρ with its axis vertical and vertex downwards. Determine the condition for which the equilibrium is stable.

* * *

5