5 SEM TDC MTH M 1

2016

(November)

MATHEMATICS

(Major)

Course: 501

(Logic and Combinatorics, and Analysis—III)

Full Marks: 80

Pass Marks: 32 (Backlog)/24 (2014 onwards)

Time: 3 hours

The figures in the margin indicate full marks for the questions

(A) Logic and Combinatorics

(Marks : 35)

- 1. (a) State True' or 'False': 1×2=2
 - (i) x-4=6 is a statement.
 - (ii) 'What is your name?' is a statement.
 - (b) (i) Write down the converse of $(p \rightarrow q)$. 1
 - (ii) Find the dual of $\sim (p \wedge q) \vee T$.

2

	(c)	 (i) Prove that p → q ≅ ~ p ∨ q. (ii) Prove that the set {→, ~} is functionally complete. Or Using arithmetical representation, prove that A ∨ (A ↔ A) is a tautology. 	1 4
		radiology.	4
2.	(a)	Define rules of inferences.	2
	(b)	Illustrate the derivation *	
		$A \rightarrow B$, $\sim (B \lor C) \models \sim A$	2
	(c)	Symbolize the following sentence using predicates: "There are both lawyers and shysters who admire John."	2
	(d)	If P_x be 'x is prime', O_x be 'x is odd', D_{xy} be 'x divides y', then translate the following into English:	4
		$(x)(O_x \to (y)(P_y \to \sim D_{xy}))$ Or	
I g		Write the formal derivation of the following sentence: "No human beings are quadrupeds. All women are human beings. Therefore, no woman is quadruped."	4
P7/1	79	1 Continue	7)

(Continued)

3. (a) State the rules of sum and product of counting.

1

In how many ways can we get a (b) total of six while rolling two dice simultaneously?

2

Or

How many solutions does the equation $x_1 + x_2 + x_3 = 11$ have, where x_1, x_2 and x₃ are non-negative integers?

2

State Vandermonde's identity. Prove (c) that

$$\binom{n+1}{r+1} = \sum_{j=r}^{n} \binom{j}{r}$$

where n, r are non-negative integers 1 + 3 = 4such that $r \leq n$.

4. (a) Define Ramsey number. Show that

 $R(m, n) \leq C(m+n-2, m-1)$

where m, n are integers greater than 1.

1+3=4

Or

Show that

(i) R(4, 4) = 18

(ii) R(5, 3) = 14

2+2=4

(b) How many integers between 1 and 500 are (i) divisible by 3 or 5 and (ii) divisible by 3 but not by 5 or 6?

Or

in fine congress water than L.

Find a generating function for a_r = the number of non-negative integral solutions to $e_1 + e_2 + \cdots + e_n = r$, where $0 \le e_i$, for each i.

P7/179

(B) Analysis—III (Complex Analysis)

(Marks: 45)

5. (a) Write down the conditions for any complex function to be analytic.

1

(b) Derive Cauchy-Riemann equation for a complex function f(z) in Cartesian coordinates.

3

(c) Examine the nature of the function

$$f(z) = \frac{x^2 y^5 (x + iy)}{x^4 + y^{10}}; \ z \neq 0, \ f(0) = 0$$

in a region including the origin.

Or

Show that the function $f(z) = z^3$ is analytic in a domain D of a complex plane C.

6

6

6. (a) Define rectifiable curve.

1

(b) Show that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) = 4 \frac{\partial^2}{\partial z \partial \overline{z}}$$

(Turn Over)

(c) If $u-v=(x-y)(x^2+4xy+y^2)$ and f(z)=u+iv is an analytic function of z, find f(z) in terms of z.

Or

State and prove Cauchy's theorem. 5

- (d) Answer the following (any one):
 - (i) Evaluate

$$\int_C \frac{dz}{z(z-1)}$$

where C is the circle |z|=3.

(ii) Evaluate

$$\int_C \frac{z-1}{(z+1)^2 (z-2)} dz$$

where C is such that |z-i|=2.

- 7. (a) Define singularities of an analytic function.
 - (b) Expand

$$\frac{1}{z(z^2-3z+2)}$$

for the region 0 < |z| < 1.

3

5

(c) Expand e^z in a Taylor's series about z=0 and determine the region of convergence.

3

Or

Find Taylor's expansion of $f(z) = \frac{z}{z^4 + 9}$ about z = 0.

3

8. (a) Find the residues of the function

$$f(z) = \frac{\cot \pi z}{(z-a)^2}$$

(b) Evaluate the following (any two): 5×2=10

(i)
$$\int_0^{2\pi} e^{-\cos\theta} \cos(n\theta + \sin\theta) d\theta$$

where n is a positive integer

(ii)
$$\int_0^{2\pi} \frac{d\theta}{1+a^2-2a\cos\theta}$$

(iii)
$$\int_{-\infty}^{\infty} \frac{\cos x \, dx}{(x^2 + a^2)(x^2 + b^2)}$$
; $a > b > 0$

(iv)
$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2 + a^2)^3} dx$$

where residue is taken to be positive

* * *