5 SEM TDC MTH M 2

2016

(November)

MATHEMATICS

(Major)

Course: 502

(Linear Algebra and Number Theory)

Full Marks: 80

Pass Marks: 32 (Backlog)/24 (2014 onwards)

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Linear Algebra)

(Marks: 40)

- 1. (a) Write which of the following statements is 'true' and which is 'false': 1×2=2
 - (i) "The set containing a linearly independent set of vectors is itself linearly independent."
 - (ii) "Intersection of two subspaces of a vector space V is always a subspace of V."

- Examine whether the vector (2, -5, 3) (b) is in the subspace of \mathbb{R}^3 spanned by the vectors (1, -3, 2), (2, -4, -1) and (1, -5, 7).
- 3

Show that the set (c)

> $S = \{(1, 0), (i, 0), (0, 1), (0, i)\}$ forms a basis for the vector space V of ordered pairs of complex numbers over the field of real numbers R, i.e., $V = \mathbb{C}^2(\mathbb{R})$. M soul 3

Let V be a finite dimensional vector (d) space of dimension n. Then prove that any set of n linearly independent vectors in V forms a basis for V.

3

Let V be any vector space. Prove that the (e) set $\{v_1, v_2, ..., v_n\}$ is linearly dependent if and only if one of the v_i 's is a linear combination of the other vi's where $v_k \in V, 1 \le k \le n.$

5

Define subspace of a vector space. Prove (f)that the set W defined as

$$W = \{(a, b, 0) : a, b \in \mathbb{R}\}$$
 is a subspace of \mathbb{R}^3 . $2+2=4$

(Continued)

P7/180

- 2. (a) Let l(p; d) and l(q; d) be two lines passing through p and q respectively having direction d. Show that l(p; d) = l(q; d) if and only if (q p) is a multiple of d.
 - (b) Let T be a linear transformation from a vector space U to a vector space V over the field F. Prove that the range of T is a subspace of V.
 - (c) Show that a linear map T from a vector space to another is one-one if and only if ker $T = \{0\}$.
 - (d) Let V be the vector space of all polynomials in x with coefficients in \mathbb{R} of the form

$$f(x) = a_0 x^0 + a_1 x^1 + a_2 x^2 + a_3 x^3$$

The differentiation operator D is a linear transformation on V. Write the matrix of D relative to the ordered basis

$$B = \{x^0, x^1, x^2, x^3\}$$

(e) Show that the mapping $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined as T(a, b) = (a+b, a-b, b) is a linear transformation from \mathbb{R}^2 into \mathbb{R}^3 . Find the rank and nullity of T. 2+2+2=6

3

3

4

GROUP-B

(Number Theory)

(Marks: 40)

- 3. When are two integers said to be relatively prime?
- **4.** Answer any *two* from the following: $3\times 2=6$
 - (a) Use division algorithm to establish that the square of any integer is either of the form 3k or 3k+1.
 - (b) Prove that if $a \mid bc$ with gcd(a, b) = 1, then $a \mid c$.
 - (c) Use Euclidean algorithm to obtain integers x and y satisfying the following:

$$gcd(56, 72) = 56x + 72y$$

- 5. (a) Show that if p is a prime and p|ab then either p|a or p|b.
 - (b) Prove that given any positive integer n,there exist n consecutive composite integers.
 - (c) Find the highest power of 5 dividing 100!.

1

3

3

2

- (a) Write a complete set of residues 6. modulo 7.
 - 1

4

If $a \equiv b \pmod{n}$ and the integers a, b, n (b) are all divisible by d > 0, then prove that

$$\frac{a}{d} \equiv \frac{b}{d} \left(\bmod \frac{n}{d} \right)$$
 3

If a is an odd integer, then prove that (c)

$$a^2 \equiv 1 \pmod{8}$$

- Solve 18x + 5y = 48. (d)
- Solve the following by using Chinese 3 (e) remainder theorem:

$$x \equiv 5 \pmod{4}$$

$$x \equiv 3 \pmod{7}$$

$$x \equiv 2 \pmod{9}$$

- 7. (a) Evaluate
 - (i) $\sigma(210)$
 - (ii) d(63)
 - (iii) $\phi(100)$

where the symbols have their usual $2 \times 3 = 6$ meanings.

When is an arithmetic function said to be multiplicative? Prove that σ is a (b) 1+3=4multiplicative function.
